Journal of Thermal Analysis and Calorimetry

, Volume 108, Issue 2, pp 399–413 | Cite as

The role of calorimetry in the structural study of mesophases and their glass states

  • F. J. Martínez Casado
  • M. Ramos Riesco
  • M. I. Redondo Yélamos
  • A. Sánchez Arenas
  • J. A. Rodríguez Cheda
Article

Abstract

Four mesomorphic states of matter are known: liquid crystal, plastic crystal, condis phase, and rotator phase, all of them are solid phases, except liquid crystal, which is fluid. Plastic crystal (also called ODIC, orientational disordered crystal), rotator phase, and even condis phase have been considered the same phase by many authors. Differences between them will be established to define their own characteristics. Two organic salts series have been used for discussion in this presentation: (1) thallium(I) alkanoate series, that presents a condis mesophase, and (2) lead(II) alkanoate series, that present a rotator one, both forming a smectic A-like liquid crystal phase. Based in the literature data of the alkyl ammonium bromide series it can be established that the short chain length members would present a rotator phase, and, the large chain ones, a condis phase. Five different glass states are known (four with partial crystalline order), corresponding with the above mentioned mesophases, and the ordinary (amorphous) glass state.

Keywords

Organic salts Thallium(II) alkanoates Lead(II) alkanoates DSC TG Adiabatic calorimetry FTIR Powder XRD Single crystal XRD NMR Mesophases Liquid crystal ODIC Plastic crystal Rotator phase Condis phase Amorphous glass Plastic crystal glass Liquid crystal glass Rotator glass Condis glass Step-wise melting process 

References

  1. 1.
    Duruz J, Michels HJ, Ubbelohde AR. Molten fatty acid salts as model ionic liquids I. Thermodynamic and transport parameters of some organic sodium salts. Proc R Soc Lond Ser A. 1971;322:281–99.CrossRefGoogle Scholar
  2. 2.
    Ramos Riesco M, Martínez Casado FJ, López-Andrés S, García Pérez MV, Redondo Yélamos MI, Torres MR, Garrido L, Rodríguez Cheda JA. Monotropic polymorphism in copper(II) decanoate. Cryst Growth Des. 2008;8:2547–54.CrossRefGoogle Scholar
  3. 3.
    Earle MJ, Seddon KR. Ionic liquids Green solvents for the future. Pure Appl Chem. 2000;72:1391–8.CrossRefGoogle Scholar
  4. 4.
    Rao CNR, Natarajan S, Vaidhyanathan R. Metal carboxylates with open architectures. Angew Chem Int Ed. 2004;43:1466–96.CrossRefGoogle Scholar
  5. 5.
    Patrick Stahly G. A survey of cocrystals reported prior to 2000. Cryst Growth Des. 2009;9:4212–29.CrossRefGoogle Scholar
  6. 6.
    Klimusheva G, Koval’Chuk A, Volynets N, Vakhnin A. Electrooptical properties of metal organic ionic liquid crystals. Opto-Electron Rev. 2002;10(1):39–42.Google Scholar
  7. 7.
    Sánchez Arenas A, García Pérez MV, Redondo MI, Cheda JAR, Roux MV, Turrión C. Thermophysical study of lead(II) n-alkanoates by DCS, optical microscopy, FTIR, and Raman spectroscopy. Liq Cryst. 1995;18(3):431–41.CrossRefGoogle Scholar
  8. 8.
    Martínez Casado FJ, García Pérez MV, Redondo Yélamos MI, Cheda JAR, Sánchez Arenas A. Intermediate rotator phase in lead(II) alkanoates. J Phys Chem C. 2007;111(18):6826–31.CrossRefGoogle Scholar
  9. 9.
    Cheda JAR, Redondo MI, García MV, López de la Fuente FL, Fernández-Martín F, Westrum EF Jr. A thermophysical study of the melting process in alkyl chain metal n-alkanoates: the thallium(I) series. J Chem Phys. 1999;111:3590–8. And all of our references therein.CrossRefGoogle Scholar
  10. 10.
    Lindau J, Diele S, Kruger H, Dorfler HD. Thermal phase-behavior of thallium (I) salts of aliphatic carbonic-acids. Z Phys Chem Leipzig. 1981;262:775–84.Google Scholar
  11. 11.
    Lindau J, Konig HJ, Dorfler HD. Systemization of the low-temperature modifications of homologous thallium(I) salts of aliphatic carbonic-acids through their mixability relationships. Colloid Polym Sci. 1983;261:236–40.CrossRefGoogle Scholar
  12. 12.
    Orientational disorders in crystals. In: Rudman R, Smith GW, editors. ODIC Newsletter. 1976;1:1–4.Google Scholar
  13. 13.
    Gregoryanz E, Goncharov AF, Hemley RJ, Mao H, Somayazulu M, Shen G. Raman, infrared, and x-ray evidence for new phases of nitrogen at high pressures and temperatures. Phys Rev B. 2002;66:224108.CrossRefGoogle Scholar
  14. 14.
    Binnemans K. Ionic liquid crystals. Chem Rev. 2005;105:4148–204.CrossRefGoogle Scholar
  15. 15.
    Wunderlich B, Moller M, Grebowicz J, Baur H. Conformational motion and disorder in low and high molecular mass crystals. London: Springer–Verlag; 1988. (Advances in Polymer Science, vol no. 87).Google Scholar
  16. 16.
    Wunderlich B. Thermodynamic description of condensed phases. J Therm Anal Calorim. 2010;102:413–24.CrossRefGoogle Scholar
  17. 17.
    Lacouture F, Francois M, Didierjean C, Rivera JP, Rocca E, Steinmetza J. Anhydrous lead(II) heptanoate. Acta Crystallogr. 2001;C57:530–1.Google Scholar
  18. 18.
    Ryckaert JP, Klein ML, McDonald IR. Disorder at the bilayer interface in the pseudohexagonal rotator phase of solid n-alkanes. Phys Rev Lett. 1987;58:698–701.CrossRefGoogle Scholar
  19. 19.
    Marbeuf A, Brown R. Molecular dynamics in n-alkanes: premelting phenomena and rotator phases. J Chem Phys. 2006;124:054901.CrossRefGoogle Scholar
  20. 20.
    Shinohara Y, Kawasaki N, Ueno S, Kobayashi I, Nakajima M, Amemiya Y. Observation of the transient rotator phase of n-hexadecane in emulsified droplets with time-resolved two-dimensional small- and wide-angle X-ray scattering. Phys Rev Lett. 2005; 94:097801(1-4).Google Scholar
  21. 21.
    Spitalsky Z, Bleha T. Energetics of stretching of conformational defects in extended poly(methylene) chains. Macromol Theory Simul. 2001;10(9):833–41.CrossRefGoogle Scholar
  22. 22.
    Wunderlich BJ. Thermal properties of aliphatic nylons and their link to crystal structure and molecular motion. J Therm Anal Calorim. 2008;93:1–17.CrossRefGoogle Scholar
  23. 23.
    Corkery RW. Metal organic framework (MOF) liquid crystals. 1D, 2D and 3D ionic coordination polymer structures in the thermotropic mesophases of metal soaps, including alkaline earth, transition metal and lanthanide soaps. Curr Opin Colloid Interface Sci. 2008;13:288–302.CrossRefGoogle Scholar
  24. 24.
    Martínez-Casado FJ, Sánchez Arenas A, García Pérez MV, Redondo Yélamos MI, López de Andrés S, Cheda JAR. Short chain lead (II) alkanoates as ionic liquids and glass formers: a DSC, X-ray diffraction and FTIR spectroscopy study. J Chem Thermdyn. 2007;39(3):455–61.CrossRefGoogle Scholar
  25. 25.
    Martínez Casado FJ, Ramos Riesco M, Sánchez Arenas A, García Pérez MV, Redondo MI, López-Andrés S, Garrido L, Cheda JAR. A novel rotator glass in lead(II) pentanoate: calorimetric and spectroscopic study. J Phys Chem B. 2008;112(51):16601–9.CrossRefGoogle Scholar
  26. 26.
    Nagle JF. Theory of biomembrane phase transitions. J Chem Phys. 1973;58:252–3.CrossRefGoogle Scholar
  27. 27.
    Nagle JF. Theory of the main lipid bilayer phase transition. Annu Rev Phys Chem. 1980;31:157–96.CrossRefGoogle Scholar
  28. 28.
    Nagle JF, Goldstein M. Decomposition of entropy and enthalpy for the melting transition of polyethylene. Macromolecules. 1985;18:2643–52.CrossRefGoogle Scholar
  29. 29.
    Flory PJ. Statistical mechanics of chain molecules. New York: Wiley; 1969.Google Scholar
  30. 30.
    García Pérez MV, Redondo Yélamos MI, López de la Fuente FL, Cheda JAR, Westrum EF Jr, Fernández-Martín F. Temperature dependence of the vibrational spectra of thallium(I) alkanoates. Appl Spectrosc. 1994;48:338–44.CrossRefGoogle Scholar
  31. 31.
    Kurik MV, Lavrentovich OD. Defects in liquid crystals: homotopy theory and experimental studies. Sov Phys Uspekhi. 1988;31:196–224.CrossRefGoogle Scholar
  32. 32.
    Gray GW, Goodby JWG. Smectic liquid crystals textures and structures. Glasgow & London: Leonard Hill; 1984. p. 23–44.Google Scholar
  33. 33.
    Martínez Casado FJ, Ramos Riesco M, García Pérez MV, Redondo Yélamos MI, López-Andrés S, Cheda JAR. Structural and thermodynamic study on short metal alkanoates: lithium propanoate and pentanoate. J Phys Chem B. 2009;113(39):12896–902.CrossRefGoogle Scholar
  34. 34.
    Martínez Casado FJ, Ramos Riesco M, Da Silva I, Labrador A, Redondo MI, García Pérez MV, López-Andrés S, Cheda JAR. Thermal and structural study of the crystal phases and mesophases in the lithium and thallium(I) propanoates and pentanoates binary systems: formation of mixed salts and stabilization of the ionic liquid crystal phase. J Phys Chem B. 2010;114(31):10075–85.CrossRefGoogle Scholar
  35. 35.
    Martínez Casado FJ, Ramos Riesco M, Da Silva I, Redondo MI, Labrador A, Cheda JAR. Lithium and lead(II) butyrates binary system. Pure compounds and an intermediate salt: from 2D to 3D coordination polymers. Cryst Growth Des. 2011;11(3):759–67.CrossRefGoogle Scholar
  36. 36.
    Martínez Casado FJ, Ramos Riesco M, Da Silva I, Redondo MI, Cheda JAR. Lithium-thallium (I) butyrates binary system: an intermediate salt and liquid crystal from non-mesogenic compounds. RSC Adv. 2011;1:147–55.CrossRefGoogle Scholar
  37. 37.
    Strobl G, Ewen B, Fischer EW, Piesczek W. Defect structure and molecular motion in the four modifications of n -tritriacontane. I. Study of defect structure in the lamellar interfaces using small angle x-ray scattering. J Chem Phys. 1974;61(12):5257–64.CrossRefGoogle Scholar
  38. 38.
    Busico V, Ferraro A, Vacatello M. Polymorphism and liquid-crystalline behavior of lithium n-hexadecanoate. J Phys Chem-US. 1984;88(18):4055–8.CrossRefGoogle Scholar
  39. 39.
    Busico V, Ferraro A, Vacatello M. A study of the “rotator” phase of 16-hydroxy-lithlum-hexadecanoate. J Chem Phys. 1986;84(1):471–5.CrossRefGoogle Scholar
  40. 40.
    Sirota EB. Remarks concerning the relation between rotator phases of bulk n-alkanes and those of Langmuir monolayers of alkyl-chain surfactants on water. Langmuir. 1997;13(14):3849–59.CrossRefGoogle Scholar
  41. 41.
    Vollhardt D. Effect of unsaturation in fatty acids on the main characteristics of Langmuir monolayers. J Phys Chem C. 2007;111(8):6805–12.CrossRefGoogle Scholar
  42. 42.
    Dorfler HD, Brandt A. X-ray diffraction studies on homologous thallium soaps below the temperature range of the neat phase 1. Calculation and comparison of the structure parameters of unit cells. Colloid Polym Sci. 1992;270(3):267–81.CrossRefGoogle Scholar
  43. 43.
    Dorfler HD, Brandt A, Kolbe A. X-ray diffraction studies on homologous thallium soaps below the temperature range of the neat phase 2. Structure models of crystalline modifications in the temperature range below the neat phase. Colloid Polym Sci. 1992;270(3):282–97.CrossRefGoogle Scholar
  44. 44.
    Bazuin CG, Guillon D, Skoulios A, Amorim da Costa AM, Burrows HD, Geraldes CFGC, Teixeira-Dias JJC, Blackmore E, Tiddy GJT. Thermotropic polymorphism in liquid-crystalline lead(II) alkanoates. Liq Cryst. 1988;3(12):1655–7.CrossRefGoogle Scholar
  45. 45.
    Busico V, Cernicchiaro P, Corradini P, Vacatello M. Polymorphism in anhydrous amphiphilic systems long-chain primary n-alkylammonium chlorides. J Phys Chem-US. 1983;87:1631–5.CrossRefGoogle Scholar
  46. 46.
    Iwai S, Hattori M, Nakamura ID, Ikeda R. Ionic dynamics in the rotator phase of n-alkylammonium chlorides (C-6-C-10), studied by H-1 nuclear-magnetic-resonance, electrical-conductivity and thermal measurements. J Chem Soc Faraday Trans. 1993;89(5):827–931.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • F. J. Martínez Casado
    • 1
  • M. Ramos Riesco
    • 2
  • M. I. Redondo Yélamos
    • 2
  • A. Sánchez Arenas
    • 3
  • J. A. Rodríguez Cheda
    • 2
  1. 1.Laboratorio de Estudios CristalográficosIACT (CSIC-UGR)GranadaSpain
  2. 2.Departamento de Química Física I, Facultad de Ciencias QuímicasUniversidad ComplutenseMadridSpain
  3. 3.Sección Departamental de Física Aplicada I, Facultad de VeterinariaUniversidad ComplutenseMadridSpain

Personalised recommendations