Journal of Thermal Analysis and Calorimetry

, Volume 108, Issue 2, pp 613–620 | Cite as

Kinetics of competitive crystallization of β- and α-modifications in β-nucleated iPP studied by isothermal stepwise crystallization technique

  • Alfréd MenyhárdEmail author
  • Gábor Dora
  • Zsuzsanna Horváth
  • Gábor Faludi
  • József Varga


Crystallization kinetics of β-nucleated isotactic polypropylene (β-iPP) under isothermal conditions were investigated by differential scanning calorimetry. iPP was nucleated by a trisamide derivative, namely tris-2,3-dimethyl-hexylamide of trimesic acid (TATA). In the presence of TATA possessing dual nucleating ability, the formation of the α- and β-form occurs simultaneously. An isothermal stepwise crystallization method is suggested in this study, which can separate the crystallization process of β- and α-iPP and consequently their crystallization kinetics can be evaluated separately. The results indicated that the mechanism of crystallization changes in temperature especially in the vicinity of the upper critical temperature of the formation of the β-phase. In addition, it was found that the ratio of the growth rates of β- and α-modification determines the characteristics of crystallization and influences the apparent rate constant of crystallization of both polymorphs.


Crystallization kinetics Avrami method Mixed polymorphic composition α- and β-iPP Isothermal stepwise crystallization (ISC) technique 



One of the authors (Alfréd Menyhárd) would like to express his indebtedness to the János Bolyai Research Scholarship of the Hungarian Academy of Sciences for the financial support.


  1. 1.
    Padden FJ, Keith HD. Spherulitic crystallization in polypropylene. J Appl Phys. 1959;30:1479–84.CrossRefGoogle Scholar
  2. 2.
    Varga J. β-Modification of isotactic polypropylene: preparation, structure, processing, properties, and application. J Macromol Sci Phys. 2002;B41:1121–71.Google Scholar
  3. 3.
    Brückner S, Meille SV, Petraccone V, Pirozzi B. Polymorphism in isotactic polypropylene. Prog Polym Sci. 1991;16:361–404.CrossRefGoogle Scholar
  4. 4.
    Lotz B, Wittmann JJ, Lovinger AJ. Structure and morphology of poly(propylenes): a molecular analysis. Polymer. 1996;37:4979–92.CrossRefGoogle Scholar
  5. 5.
    Juhász P, Belina K. Crystallization and morphology of propylene/pentene random copolymers. J Reinf Plast Compos. 2001;20:2–11.Google Scholar
  6. 6.
    Krache R, Benavente R, Lopez-Majada JM, Perena JM, Cerrada ML, Perez E. Competition between α, β, and γ polymorphs in beta-nucleated metallocenic isotactic polypropylene. Macromolecules. 2007;40:6871–8.CrossRefGoogle Scholar
  7. 7.
    Leugering HJ. Einfluss der Kristallstuktur und Überstuktur auf einige Eigeschaften von Polypropylen. J Macromol Chem. 1967;109:204–16.CrossRefGoogle Scholar
  8. 8.
    Shi GY, Zhang XD, Qiu ZX. Crystallization kinetics of β-phase poly(propylene). Macromol Chem Phys. 1992;193:583–91.CrossRefGoogle Scholar
  9. 9.
    Varga J, Mudra I, Ehrenstein GW. Highly active thermally stable β-nucleating agents for isotactic polypropylene. J Appl Polym Sci. 1999;74:2357–68.CrossRefGoogle Scholar
  10. 10.
    Menyhárd A, Varga J, Molnár G. Comparison of different β-nucleators for isotactic polypropylene, characterisation by DSC and temperature-modulated DSC (TMDSC) measurements. J Therm Anal Calorim. 2006;83:625–30.CrossRefGoogle Scholar
  11. 11.
    Keda N, Kobayashi T, Killough L. Novel β-nucleator for polypropylene. Polypropylene ‘96. World Congress. 1996.Google Scholar
  12. 12.
    Cermak R, Obadal M, Ponizil P, Polaskova M, Stoklasa K, Lengalova A. Injection-moulded α- and β-polypropylenes: I. Structure vs. processing parameters. Eur Polym J. 2005;41:1838–45.CrossRefGoogle Scholar
  13. 13.
    Dong M, Guo Z, Yu J, Su Z. Crystallization behavior and morphological development of isotactic polypropylene with an aryl amide derivative as β-form nucleating agent. J Polym Sci Part B. 2008;46:1725–33.CrossRefGoogle Scholar
  14. 14.
    Mohmeyer N, Schmidt HW, Kristiansen PM, Altstadt V. Influence of chemical structure and solubility of bisamide additives on the nucleation of isotactic polypropylene and the improvement of its charge storage properties. Macromolecules. 2006;39:5760–7.CrossRefGoogle Scholar
  15. 15.
    Varga J, Stoll K, Menyhárd A, Horváth Z. Crystallization of isotactic polypropylene in the presence of a beta-nucleating agent based on a trisamide of trimesic acid. J Appl Polym Sci. 2011;121:1469–80.CrossRefGoogle Scholar
  16. 16.
    Dou Q. Effect of calcium salts of glutaric acid and pimelic acid on the formation of β crystalline form in isotactic polypropylene. Polym Plast Technol Eng. 2008;47:851–7.CrossRefGoogle Scholar
  17. 17.
    Dou Q, Lu QL. Effect of magnesium malonate on the formation of the β crystalline form in isotactic polypropylene. J Vinyl Addit Technol. 2008;14:136–41.CrossRefGoogle Scholar
  18. 18.
    Dou Q, Lu QL, Li HD. Effect of metallic salts of malonic acid on the formation of β-crystalline form in isotactic polypropylene. J Macromol Sci Part B Phys. 2008;47:900–12.CrossRefGoogle Scholar
  19. 19.
    Dou Q, Lu Q. Effect of calcium malonate on the formation of β crystalline form in isotactic poly(propylene). Polym Adv Technol. 2008;19:1522–7.Google Scholar
  20. 20.
    Zhang Z, Tao Y, Yang Z, Mai K. Preparation and characteristics of nano-CaCO3 supported β-nucleating agent of polypropylene. Eur Polym J. 2008;44:1955–61.CrossRefGoogle Scholar
  21. 21.
    Zhang Z, Wang C, Yang Z, Chen C, Mai K. Crystallization behavior and melting characteristics of PP nucleated by a novel supported β-nucleating agent. Polymer. 2008;49:5137–45.CrossRefGoogle Scholar
  22. 22.
    Xiao W, Wu P, Feng J. Effect of β-nucleating agents on crystallization and melting behavior of isotactic polypropylene. J Appl Polym Sci. 2008;108:3370–9.CrossRefGoogle Scholar
  23. 23.
    Wunderlich B. Macromolecular physics. London: Academic Press; 1979.Google Scholar
  24. 24.
    Avrami M. Kinetics of phase change I. General theory. J Chem Phys. 1939;7:1103.CrossRefGoogle Scholar
  25. 25.
    Avrami M. Kinetics of phase change II. Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212.CrossRefGoogle Scholar
  26. 26.
    Kolmogoroff AN. On the statistics of crystallization process in metals. Isvest Akad Nauk SSSR Ser Math. 1937;3:335.Google Scholar
  27. 27.
    Evans UR. The Laws of expanding circles and spheres in relation of the lateral growths of surface films and the grain size of metals. Trans Faraday Soc. 1945;41:365.CrossRefGoogle Scholar
  28. 28.
    Varga J. Crystallization, melting and supermolecular structure of isotactic polypropylene. In: Karger-Kocsis J, editor. Polypropylene: structure, blends and composites, vol. 1. London: Chapmann&Hall; 1995. p. 56–115.CrossRefGoogle Scholar
  29. 29.
    Wei ZY, Zhang WX, Chen GY, Liang JC, Chang Y, Liu LA, Wang P, Sun JC. Crystallization behavior of isotactic polypropylene/magnesium salt whisker composites modified by compatibilizer PP-g-MAH. J Therm Anal Calorim. 2011;103:701–10.CrossRefGoogle Scholar
  30. 30.
    Wei ZY, Zhang WX, Chen GY, Liang JC, Yang S, Wang P, Liu LA. Crystallization and melting behavior of isotactic polypropylene nucleated with individual and compound nucleating agents. J Therm Anal Calorim. 2010;102:775–83.CrossRefGoogle Scholar
  31. 31.
    Chen YH, Mao YM, Li ZM, Hsiao BS. Competitive growth of α- and β-crystals in β-nucleated isotactic polypropylene under shear flow. Macromolecules. 2010;43:6760–71.CrossRefGoogle Scholar
  32. 32.
    Varga J. Melting memory effect of the β-modification of polypropylene. J Therm Anal Calorim. 1986;31:165–72.CrossRefGoogle Scholar
  33. 33.
    Monasse B, Haudin JM. Growth transition and morphology change in polypropylene. Colloid Polym Sci. 1985;263:822–31.CrossRefGoogle Scholar
  34. 34.
    Varga J, Garzó G. Isothermal crystallization of the β-modification of polypropylene. Acta Chim Acad Sci Hung. 1991;128:303–17.Google Scholar
  35. 35.
    Varga J, Fujiwara Y, Ille A. βα-Bifurcation of growths during the spherulitic crystallization of polypropylene. Period Polytech Chem Eng. 1990;34:255–71.Google Scholar
  36. 36.
    De Santis F, Adamovsky S, Titomanlio G, Schick C. Scanning nanocalorimetry at high cooling rate of isotactic polypropylene. Macromolecules. 2006;39:2562–7.CrossRefGoogle Scholar
  37. 37.
    De Santis F, Adamovsky S, Titomanlio G, Schick C. Isothermal nanocalorimetry of isotactic polypropylene. Macromolecules. 2007;40:9026–31.CrossRefGoogle Scholar
  38. 38.
    Varga J, Menyhárd A. Effect of solubility and nucleating duality of N,N′-dicyclohexyl-2,6-naphthalenedicarboxamide on the supermolecular structure of isotactic polypropylene. Macromolecules. 2007;40:2422–31.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • Alfréd Menyhárd
    • 1
    • 2
    Email author
  • Gábor Dora
    • 1
    • 2
  • Zsuzsanna Horváth
    • 1
    • 2
  • Gábor Faludi
    • 1
    • 2
  • József Varga
    • 1
    • 2
  1. 1.Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials ScienceBudapest University of Technology and EconomicsBudapestHungary
  2. 2.Hungarian Academy of Sciences, Chemical Research CentreInstitute of Environmental and Material ChemistryBudapestHungary

Personalised recommendations