Journal of Thermal Analysis and Calorimetry

, Volume 110, Issue 2, pp 661–669 | Cite as

Thermal decomposition of Prussian blue under inert atmosphere

  • Claudia Aparicio
  • Libor Machala
  • Zdenek Marusak


The thermal decomposition of Prussian blue (iron(III) hexacyanoferrate) under inert atmosphere of argon was monitored by thermal analysis from room temperature up to 1000 °C. X-ray powder diffraction and 57Fe Mössbauer spectroscopy were the techniques used for phase identification before and after sample heating. The decomposition reaction is based on a successive release of cyanide groups from the Prussian blue structure. Three principal stages were observed including dehydration, change of crystal structure of Prussian blue, and its decomposition. At 400 °C, a monoclinic Prussian blue analogue was identified, while at higher temperatures the formation of various polymorphs of iron carbides was observed, including an orthorhombic Fe2C. Increase in the temperature above 700 °C induced decomposition of primarily formed Fe7C3 and Fe2C iron carbides into cementite, metallic iron, and graphite. The overall decomposition reaction can be expressed as follows: Fe4[Fe(CN)6]3·4H2O → 4Fe + Fe3C + 7C + 5(CN)2 + 4N2 + 4H2O.


Insoluble Prussian blue Iron carbide XRD Calcination 



This study has been supported by the Operational Program Research and Development for Innovations—European Regional Development Fund (CZ.1.05/2.1.00/03.0058), the internal IGA grants of Palacky University (PrF_2010_010, PrF_2011_013), the projects of the Ministry of Education of the Czech Republic (1M6198959201 and MSM6198959218), and the project of the Academy of Sciences of the Czech Republic (KAN115600801). The authors would like to thank to Jan Filip for XRD measurements, Martin Heřmánek for TG measurements, Jana Ševčíkova for Mössbauer measurements, Oldřich Schneeweiss for his comments on carbide phases, and Jiří Tuček for language corrections.

Supplementary material

10973_2011_1890_MOESM1_ESM.doc (501 kb)
Supplementary material 1 (DOC 501 kb)


  1. 1.
    Buser HJ, Schwarzenbach D, Petter W, Ludi A. The crystal structure of Prussian blue: Fe4[Fe(CN)6]3·xH2O. Inorg Chem. 1977;163:2704–9.CrossRefGoogle Scholar
  2. 2.
    Ito A, Suenaga M, Ono K. Mössbauer study of soluble Prussian blue, insoluble Prussian blue, and Turnbull’s blue. J Chem Phys. 1968;48:3597–9.CrossRefGoogle Scholar
  3. 3.
    Wilde RE, Ghosh SN, Marshall BJ. The Prussian blues. Inorg Chem. 1970;9:2512–6.CrossRefGoogle Scholar
  4. 4.
    Weiser HB, Milligan WO, Bates JB. X-ray diffraction studies on heavy-metal iron-cyanides. J Phys Chem. 1942;46:99–111.CrossRefGoogle Scholar
  5. 5.
    Allen JF, Bonnette AK. Thermal decomposition of Prussian blue: isotopic labeling with Mössbauer-inactive Fe-56. J Inorg Nucl Chem. 1974;36:1011–6.CrossRefGoogle Scholar
  6. 6.
    Inoue H, Nakazawa T, Mitsuhashi T, Shirai T, Fluck E. Characterization of Prussian blue and its thermal decomposition products. Hyperfine Interact. 1989;46:725–31.CrossRefGoogle Scholar
  7. 7.
    Ludi A, Güdel HU. Structural chemistry of polynuclear transition metal cyanides. Struct Bond. 1973;14:1–21.CrossRefGoogle Scholar
  8. 8.
    Herren F, Fischer P, Ludi A, Hälg W. Neutron diffraction study of Prussian blue, Fe4[Fe(CN)6]3·xH2O. Location of water molecules and long-range magnetic order. Inorg Chem. 1980;19:956–9.CrossRefGoogle Scholar
  9. 9.
    Vaucher S, Li M, Mann S. Synthesis of Prussian blue nanoparticles and nanocrystal superlattices in reverse microemulsions. Angew Chem Int Ed. 2000;39:1793–6.CrossRefGoogle Scholar
  10. 10.
    Fiorito PA, Gonçales VR, Ponzio EA, Córdoba de Torresi SI. Synthesis, characterization and immobilization of Prussian blue nanoparticles. A potential tool for biosensing devices. Chem Commun. 2005;3:366–8.CrossRefGoogle Scholar
  11. 11.
    Shen X, Wu S, Liu Y, Wang K, Xu Z, Lu W. Morphology synthesis and properties of well-defined Prussian blue nanocrystals by a facile solution approach. J Colloid Interface Sci. 2009;329:188–95.CrossRefGoogle Scholar
  12. 12.
    Zhou PH, Xue DS. Finite-size effect on magnetic properties in Prussian blue nanowire arrays. J Appl Phys. 2004;96:610–4.CrossRefGoogle Scholar
  13. 13.
    Karyakin AA, Karyakina EE. Electroanalytical applications of Prussian blue and its analogs. Russ Chem Bull Int Ed. 2001;50:1811–7.CrossRefGoogle Scholar
  14. 14.
    Koncki R. Chemical sensors and biosensors based on Prussian blues. Crit Rev Anal Chem. 2002;32:79–96.CrossRefGoogle Scholar
  15. 15.
    Puganova EA, Karyakin AA. New materials based on nanostructured Prussian blue for development of hydrogen peroxide sensors. Sensor Actuator B. 2005;109:167–70.CrossRefGoogle Scholar
  16. 16.
    Rasmussen PG, Meyers EA. An investigation of Prussian blue analogues by Mössbauer spectroscopy and magnetic susceptibility. Polyhedron. 1984;3:183–90.CrossRefGoogle Scholar
  17. 17.
    Verdaguer M, Girolami G. Magnetic Prussian blue analogs. In: Miller JS, Drillon M, editors. Magnetism: molecules to materials V. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2005. p. 283–346.CrossRefGoogle Scholar
  18. 18.
    Cosgrove JG, Collins RL, Murty DS. Preparation of ferrous ferricyanide (not Turnbull’s blue). J Am Chem Soc. 1973;95:1083–6.CrossRefGoogle Scholar
  19. 19.
    Zboril R, Machala L, Mashlan M, Sharma V. Iron(III) oxide nanoparticles in the thermally induced oxidative decomposition of Prussian blue, Fe4[Fe(CN)6]3. Cryst Growth Des. 2004;4:1317–25.CrossRefGoogle Scholar
  20. 20.
    De Marco D, Marchese A, Migliardo P, Bellomo A. Thermal analysis of some cyano compounds. J Therm Anal Calorim. 1987;32:927–37.CrossRefGoogle Scholar
  21. 21.
    De Marco D. Thermal analysis of some cyano compounds. Part II. Thermal behaviour of mixed KLnFe(CN)6·4H2O (Ln = La(III), Ce(III), Nd(III)). Thermochim Acta. 1988;128:127–40.CrossRefGoogle Scholar
  22. 22.
    De Marco D. Thermal analysis of some cyano compounds. Note III. The thermal behaviour of Na4Fe(CN)6·10H2O, K2Cu3[Fe(CN)6]2·xH2O, K2Zn3[Fe(CN)6]2·xH2O and Pb2Fe(CN)6. J Therm Anal Calorim. 1989;35:2279–90.CrossRefGoogle Scholar
  23. 23.
    De Marco D, Linert W. Thermal analysis of some cyano compounds. Part IV. The thermal behaviour of LnFe3+(CN)6·nH2O (La = La(III), Ce(III), Pr(III), Nd(III)). Thermochim Acta. 1991;175:249–61.CrossRefGoogle Scholar
  24. 24.
    Brar AS, Sandhu HS, Sandhu SS. Thermal decomposition of hexahydrato thorium(IV) ferrocyanide. Thermochim Acta. 1980;41:253–6.CrossRefGoogle Scholar
  25. 25.
    Lehto J, Haukka S, Koskinen P, Blomberg M. Thermal decomposition of potassium cobalt hexacyanoferrates(II). Thermochim Acta. 1990;160:343–7.CrossRefGoogle Scholar
  26. 26.
    Navarro MC, Lagarrigue MC, De Paoli JM, Carbonio RE, Gómez MI. A new method of synthesis of BiFeO3 prepared by thermal decomposition of Bi[Fe(CN)6]·4H2O. J Therm Anal Calorim. 2010;102:655–60.CrossRefGoogle Scholar
  27. 27.
    Gil DM, Navarro MC, Lagarrigue MC, Guimpel J, Carbonio RE, Gómez MI. Synthesis and structural characterization of perovskite YFeO3 by thermal decomposition of a cyano complex precursor, Y[Fe(CN)6]·4H2O. J Therm Anal Calorim. 2011;103:889–96.CrossRefGoogle Scholar
  28. 28.
    Gallagher PK, Prescott B. Further studies of the thermal decomposition of europium hexacyanoferrate(III) and ammonium europium hexacyanoferrate(II). Inorg Chem. 1970;9:2510–2.CrossRefGoogle Scholar
  29. 29.
    Žák T, Jirásková Y. CONFIT: Mössbauer spectra fitting program. Surf Interface Anal. 2006;38:710–4.CrossRefGoogle Scholar
  30. 30.
    Nomura K, Takeda M, Iiyama T, Sakai H. Mössbauer studies of jarosite, mikasaite and Yapavaiite, and implication to their Martian counterparts. Hyperfine Interact. 2005;166:657–64.CrossRefGoogle Scholar
  31. 31.
    Rodriguez-Carvajal J. An introduction to the program Fullprof 2000 (version July 2001).
  32. 32.
    Reguera E, Fernández-Bertrán J. Effect of the water of crystallization on the Mössbauer spectra of hexacyanoferrates (II and III). Hyperfine Interact. 1994;88:49–58.CrossRefGoogle Scholar
  33. 33.
    Reguera E, Fernández-Bertrán J, Balmaseda J. The existence of ferrous ferricyanide. Transit Metal Chem. 1999;24:648–54.CrossRefGoogle Scholar
  34. 34.
    Reguera E, Yee-Madeira H, Fernández-Bertran J, Nuñez L. Mössbauer spectra of ferrous salts of transition metal cyano complexes. A survey. Transit Metal Chem. 1999;24:163–7.CrossRefGoogle Scholar
  35. 35.
    Herbstein FH, Snyman JA. Identification of Eckstrom-Adcock iron carbide as Fe7C3. Inorg Chem. 1964;3:894–6.CrossRefGoogle Scholar
  36. 36.
    Lodya JAL, Gericke H, Ngubane J, Dlamini TH. Synthesis of Fe-carbides species by reactive milling. Hyperfine Interact. 2009;190:37–42.CrossRefGoogle Scholar
  37. 37.
    Yamada Y, Yoshida H, Kouno K, Kobayashi Y. Iron carbide films produced by laser deposition. J Phys Conf Ser. 2010;217:012096.CrossRefGoogle Scholar
  38. 38.
    Fang CM, van Huis MA, Zandbergen HW. Structure and stability of Fe2C phases from density-functional theory calculations. Scr Mater. 2010;63:418–21.CrossRefGoogle Scholar
  39. 39.
    Barton GH, Gale B. The Structure of a pseudo-hexagonal iron carbide. Acta Crystallogr. 1964;17:1460–2.CrossRefGoogle Scholar
  40. 40.
    Niemantsverdriet JW, van der Kraan AM, van Dijk WL, van der Baan HS. Behavior of metallic iron catalysis during Fischer-Tropsch synthesis studied with Mössbauer spectroscopy, X-ray diffraction, carbon content determination, and reaction kinetic measurements. J Phys Chem. 1980;84:3363–70.CrossRefGoogle Scholar
  41. 41.
    Amelse JA, Grynkewich G, Butt JB, Schwartz LH. Mössbauer spectroscopic study of passivated small particles of iron and iron carbide. J Phys Chem. 1981;85:2484–8.CrossRefGoogle Scholar
  42. 42.
    Le Caër G, Dubois JM, Pijolar M, Perrichon V, Busslère P. Characterization by Mössbauer spectroscopy of iron carbides formed by Fischer-Tropsch synthesis. J Phys Chem. 1982;86:4799–808.CrossRefGoogle Scholar
  43. 43.
    Ron M. Iron-carbon and iron-nitrogen systems. In: Cohen RL, editor. Applications of Mössbauer spectroscopy, vol II. New York: Academic Press; 1980. p. 329–92.Google Scholar
  44. 44.
    Eckstrom HC, Adcock WC. A new iron carbide in hydrocarbon synthesis catalysis. J Am Chem Soc. 1950;72:1042–3.CrossRefGoogle Scholar
  45. 45.
    Cohn EM, Hofer LJE. Mode of transition from Hägg iron carbide to cementite. J Am Chem Soc. 1950;72:4662–4.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • Claudia Aparicio
    • 1
  • Libor Machala
    • 1
  • Zdenek Marusak
    • 1
  1. 1.Regional Centre of Advanced Technologies and Materials, Departments of Experimental Physics and Physical Chemistry, Faculty of SciencePalacky UniversityOlomoucCzech Republic

Personalised recommendations