Journal of Thermal Analysis and Calorimetry

, Volume 107, Issue 2, pp 681–691 | Cite as

An in-depth in situ IR study of the thermal decomposition of yttrium trifluoroacetate hydrate

  • M. MosiadzEmail author
  • K. L. Juda
  • S. C. Hopkins
  • J. Soloducho
  • B. A. Glowacki


The pyrolysis of Y(CF3COO)3·nH2O at temperatures up to 1,000 °C, under flowing pure Ar, O2 and O2 saturated with water vapour, was extensively analysed. The formation of HF is observed directly and the existence of a :CF2 diradical is inferred during a trifluoroacetic acid salt decomposition. High resolution thermogravimetry, differential scanning calorimetry, X-ray diffractometry and scanning electron microscopy indicated that the exothermic one-stage decomposition of the anhydrate salt occurs at 267 °C, forming YF3. Fourier transform infrared spectroscopy identified (CF3CO)2O, CF3COF, COF2, CO2 and CO as the principal volatile species; and revealed the influence of water on the reactions liberating gaseous CF3COOH, CHF3, HF, and SiF4 (from reactions with glass or quartz components). NO2 and N2O evolution suggested that traces of CH3NO2 were present in the starting material. Thermogravimetry and X-ray diffractometry indicated that the slow hydrolysis of the fluoride occurs between 630 and 655 °C, forming a mixture of Y2O3, YOF, Y7O6F9, and YF3. The decomposition and hydrolysis temperatures are significantly lower than previously reported, which has implications for sol–gel processing.


Yttrium trifluoroacetate Yttrium oxide Yttrium oxyfluoride Yttrium fluoride HR-TG FT-IR DSC 



Mariusz Mosiadz would like to thank Mr. Robert Cornell (Polymer Characterisation Laboratory, Department of Materials Science and Metallurgy, University of Cambridge) for help with thermal analysis. Katarzyna Juda would like to gratefully acknowledge the Socrates-Erasmus Exchange Programme of the European Commission for financial support. This research was funded by the European Commission Sixth Framework Programme (MRTN-CT-2006-035619), Marie Curie Action NESPA Project (NanoEngineered Superconductors for Power Applications).


  1. 1.
    Drexhage MG. Treatise on material science and technology. In: Tomozawa M, Doremus R, editors. Glass IV, vol. 26. New York: Academic Press Inc; 1985. p. 151.Google Scholar
  2. 2.
    Poulain M. Halide glasses. J Non Cryst Solids. 1983;56:1–14.CrossRefGoogle Scholar
  3. 3.
    Pulker HK. Characterization of optical thin films. Appl Opt. 1979;18:1969–77.CrossRefGoogle Scholar
  4. 4.
    Wagener U, Russel C. A pyrolytic route to fluoride glasses. II. Preparation of glasses in the system ZrF4-BaF2-LaF3-A1F3-NaF. J Non Cryst Solids. 1993;152:167–71.CrossRefGoogle Scholar
  5. 5.
    Thielsch R, Bottcher H. Preparation and properties of Ge microcrystals in MgF2 layers. Chem Phys Lett. 1992;189:226–30.CrossRefGoogle Scholar
  6. 6.
    Furubayashi T, Nakataki I. Superparamagnetism of granular Fe-MgF2 films. IEEE Trans Magn. 1998;34:1117–9.CrossRefGoogle Scholar
  7. 7.
    Buchal C, et al. 1.5 μm Photoluminescence of Er3+in YF3, LuF3, and LaF3 thin films. Appl Phys Lett. 1996;68:438–40.CrossRefGoogle Scholar
  8. 8.
    Lau J, Nakata AM, Mackenzie JD. Influence of drawing temperature on the strength of fluoride glass fibers. J Non Cryst Solids. 1985;70:233–42.CrossRefGoogle Scholar
  9. 9.
    Poignant H, Falcou C, Le Mellot J. The preparation of fluoride glass single mode fibres. Glass Technol. 1987;28:38–42.Google Scholar
  10. 10.
    Gupta A, et al. Superconducting oxide films with high transition temperature prepared from metal trifluoroacetate precursors. Appl Phys Lett. 1988;52:2077–9.CrossRefGoogle Scholar
  11. 11.
    McIntyre PC, Cima MJ, Ng MF. Metalorganic deposition of high-JC Ba2YCu3O7−x thin films from trifluoroacetate precursors onto (100) SrTiO3. J Appl Phys. 1990;68:4183–7.CrossRefGoogle Scholar
  12. 12.
    Russel C. A pyrolytic route to fluoride glasses. I. Preparation and thermal decomposition of metal trifluoroacetates. J Non Cryst Solids. 1993;152:161–6.CrossRefGoogle Scholar
  13. 13.
    Mahler W. The inorganic chemistry of carbon difluoride. Inorg Chem. 1963;2:230.CrossRefGoogle Scholar
  14. 14.
    Sathyamurthy S, Salama K. Processing of YBa2Cu3Ox films by solution techniques using metal-organic decomposition. J Supercond. 1998;11:545–53.Google Scholar
  15. 15.
    Mukhopadhyay SM, Su J, Chintameneni V. Solution-based approaches to fabrication of YBa2Cu3O7−d (YBCO): precursors of tri-fluoroacetate (TFA) and nanoparticle colloids. J Electron Mater. 2007;36:1243–51.CrossRefGoogle Scholar
  16. 16.
    Heal GR. Thermogravimetry and derivative thermogravimetry. In: Haines PJ, editor. Principles of thermal analysis and calorimetry. Cambridge: The Royal Society of Chemistry; 2002. p. 10–54.CrossRefGoogle Scholar
  17. 17.
    Zhang J, et al. Synthesis, characterization and molecular structures of yttrium trifluoroacetate complexes with O- and N-donors: complexation vs. hydrolysis. Eur J Inorg Chem. 2005;19:3928–35.CrossRefGoogle Scholar
  18. 18.
    Jollie DM, Harrison PG. An in situ IR study of the thermal decomposition of trifluoroacetic acid. J Chem Soc Perkin Trans. 1997;2:1571–5.Google Scholar
  19. 19.
    Kuipers GA, Smith DF, Nielsen AH. Infrared spectrum of hydrogen fluoride. J Chem Phys. 1965;25:275–9.CrossRefGoogle Scholar
  20. 20.
    Pouchert CJ. The Aldrich library of FT-IR spectra vapor phase. 1st ed. Milwaukee: Aldrich Chemical Company Inc.; 1989.Google Scholar
  21. 21.
    Redington RL. Matrix-isolation spectra of 18O-substituted trifluoroacetic acid monomers and vibrational assignments for related CF3-containing molecules. Spectrochim Acta A. 1975;31:1699–705.CrossRefGoogle Scholar
  22. 22.
    Kagarise RE. Infrared spectrum of trifluoroacetic acid vapor. J Chem Phys. 1957;27:519–22.CrossRefGoogle Scholar
  23. 23.
    Berney CV, Cormier AD. Vibrational spectra of acetyl fluoride and acetyl fluoride-d3. Spectrochim Acta A. 1972;28:1813–22.CrossRefGoogle Scholar
  24. 24.
    Craig NC. Infrared spectrum of gasous carbonyl fluoride-18O. Spectrochim Acta A. 1988;44:1225–6.CrossRefGoogle Scholar
  25. 25.
    Francisco JS, Williams IH. A re-examination of the infrared and ultraviolet spectroscopy of trifluoroacetyl fluoride and trifluoroacetyl chloride: an experimental and theoretical study. Spectrochim Acta A. 1992;48:1115–26.CrossRefGoogle Scholar
  26. 26.
    Loos KR, Lord RC. Vibrational spectrum and barrier to internal rotation for CF3CFO. Spectrochim Acta A. 1965;21:119–25.CrossRefGoogle Scholar
  27. 27.
    Liang J, et al. Chemisorption study of trifluoroacetyl fluoride on FeF by FT-IR spectroscopy. J Fluor Chem. 1996;79:53–7.CrossRefGoogle Scholar
  28. 28.
    Pola J, Bastl Z, Tlaskal J. Infrared-laser induced production of silicon coating via reaction of silane with trifluoroacetic acid. Infrared Phys. 1990;30:355–7.CrossRefGoogle Scholar
  29. 29.
    Mitsch RA. Difluorodiazirine. II. Difluoromethane derivatives. J Heterocycl Chem. 1964;1:223–34.Google Scholar
  30. 30.
    Shimanouchi T. Tables of molecular vibrational frequencies. Consolidated volume II. J Phys Chem Ref Data. 1977;6:993–1103.CrossRefGoogle Scholar
  31. 31.
    Jones EA, et al. The infrared and Raman spectra of SiF4. J Chem Phys. 1951;19:242–5.CrossRefGoogle Scholar
  32. 32.
    Bessette F, et al. Infrared and Raman spectra of liquid and crystalline silicon tetrafluoride. Can J Chem. 1970;48:410–6.CrossRefGoogle Scholar
  33. 33.
    Holloway JH, Laycock D. Preparations and reactions of oxide fluorides of the transition metals, the lanthanides and the actinides. In: Emeleus HJ, Sharpe AG, editors. Advances in inorganic chemistry and radiochemistry, vol. 28. London: Academic Press Inc. Ltd.; 1984. p. 74.Google Scholar
  34. 34.
    Rillings KW, Roberts JE. A thermal study of the trifluoroacetates and pentafluoropropionates of praseodymium, samarium and erbium. Thermochim Acta. 1974;10:285–98.CrossRefGoogle Scholar
  35. 35.
    Baillie MJ, et al. Anhydrous metal trifluoroacetates. J Chem Soc A. 1968; 12:3110–3114.Google Scholar
  36. 36.
    Baillie MJ, et al. Solutions of copper(II) perchlorates, trifluoroacetates, and tetra-fluoroborates in organic solvents. J Chem Soc A. 1968; 104–107. doi:  10.1039/J19680003151
  37. 37.
    Sartori P, Weidenbruch M. Trifluoroacetates of silicon, germanium and tin. Angew Chem Int Ed. 1965;4:1072.Google Scholar
  38. 38.
    George C, et al. Kinetics of mass transfer of carbonyl fluoride, trifluoroacetyl fluoride, and trifluoroacetyl chloride at the air/water interface. J Phys Chem. 1994;98:10857–62.CrossRefGoogle Scholar
  39. 39.
    Croce AE, Castellano E. Carbonyl fluoride infrared spectrophotometric determination. J Fluorine Chem. 1989;44:267–73.CrossRefGoogle Scholar
  40. 40.
    Pola J. CW-CO2 laser-induced and SF6-sensitized decomposition of trifluoroacetic acid. Collect Czech Chem Commun. 1981;46:2854–9.CrossRefGoogle Scholar
  41. 41.
    Clark HC, Willis CJ. Perfluoroalkyl derivatives of tin. I. Trimethyltrifluoromethyltin. J Am Chem Soc. 1960;82:1888–91.CrossRefGoogle Scholar
  42. 42.
    Blake PG, Pritchard H. The thermal decomposition of trifluoroacetic acid. J Chem Soc B. 1967; 282–286. doi: 10.1039/J29670000282.
  43. 43.
    Gozzo F, Patric CR. The thermal decomposition of chlorodifluoromethane. Tetrahedron. 1966;22:3329–36.CrossRefGoogle Scholar
  44. 44.
    Corbett PJ, Whittle E. The thermal decomposition of perfluoroacetic anhydride. J Chem Soc (Resumed). 1963; 3247–3251. doi: 10.1039/JR9630003247
  45. 45.
    Zmbov KF, Uy OM. Mass spectrometric study of the high temperature equilibrium C2F4 ↔ 2CF2 and the heat of formation of the CF2 radical. J Am Chem Soc. 1968;90:5090–2.Google Scholar
  46. 46.
    Roberts JE. Lanthanum and neodymium salts of trifluoroacetic acid. J Am Chem Soc. 1961;83:1087–8.CrossRefGoogle Scholar
  47. 47.
    Fujihara S, Tada M, Toshio K. Controlling factors for the conversion of trifluoroacetate sols into thin metal fluoride coatings. J Sol Gel Sci Technol. 2000;19:311–4.CrossRefGoogle Scholar
  48. 48.
    Fujihara S, Kato T, Kimura T. Sol–Gel processing and luminescent properties of rare-earth oxyfluoride materials. J Sol Gel Sci Technol. 2002;26:953–6.CrossRefGoogle Scholar
  49. 49.
    Mosiadz M, et al. An in-depth in situ study of the thermal decomposition of barium trifluoroacetate hydrate. Thermochim Acta. 2011;513:33–7.CrossRefGoogle Scholar
  50. 50.
    Tada M, Fujihara S, Kimura T. Sol–gel processing and characterization of alkaline earth and rare-earth fluoride thin films. J Mater Res. 1999;14:1610–6.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • M. Mosiadz
    • 1
    Email author
  • K. L. Juda
    • 1
    • 2
  • S. C. Hopkins
    • 1
  • J. Soloducho
    • 2
  • B. A. Glowacki
    • 1
    • 3
  1. 1.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUnited Kingdom
  2. 2.Department of ChemistryWroclaw University of TechnologyWroclawPoland
  3. 3.Institute of Power EngineeringWarsawPoland

Personalised recommendations