Journal of Thermal Analysis and Calorimetry

, Volume 107, Issue 3, pp 1267–1276 | Cite as

Degradation of aged nitrocellulose investigated by thermal analysis and chemiluminescence

  • Jozef Rychlý
  • Agnes Lattuati-Derieux
  • Lyda Matisová-Rychlá
  • Katarína Csomorová
  • Ivica Janigová
  • Bertrand Lavédrine


Non-isothermal thermogravimetry, differential scanning calorimetry and chemiluminescence were used for characterization of degradation of pre-aged nitrocellulose in order to elucidate the optimal route of extrapolation of rate constants from the region of the autoaccelerated reaction to lower temperatures. First order rate constants, the one characterizing the decomposition of nitrocellulose in the rate auto-accelerating region and the two constants corresponding to the slow process in induction period of nitrocellulose decomposition were shown to provide a sufficient description. The rate constants determined for several temperatures were shown to depend on the amount of char residue which is formed from pre-aged samples after the thermogravimetry runs from 40 to 550 °C.


Nitrocellulose Ageing of Thermogravimetry Differential scanning calorimetry Chemiluminescence Rate constants 



The present research has received funding from the European Community’s Seventh Framework Programme FP7/2007-2013 under the grant agreement no. 212218—Popart: Strategy for the preservation of plastic artefacts in museum collections. The authors gratefully acknowledge the support from the Grant Agency VEGA, Project No. 2/0115/09. This publication is the result of the project implementation: Centre for materials, layers and systems for applications and chemical processes under extreme conditions, Stage II which was supported by the Research & Development Operational Programme funded by the ERDF.


  1. 1.
    Quye A, Littlejohn D, Pethrick RA, Steward RA. Investigation of inherent degradation in cellulose nitrate museum artefacts. Polym Degrad Stab. 2011. doi: 10.1016/j.polymdegradstab.2011.03.009.
  2. 2.
    Clarkson A, Roberston CM. Refined calculation for determination of nitrogen in nitrocellulose by infrared spectrometry. Anal Chem. 1966;38:522.CrossRefGoogle Scholar
  3. 3.
    Krabbendam-LaHaye ELM, De Klerk WPC, Krämer RE. The kinetic behavior and thermal stability of commercially available explosives. J Therm Anal Calorim. 2005;80:495–501.CrossRefGoogle Scholar
  4. 4.
    Makashir PS, Mahajan RR, Agrawal JJ. Studies on kinetics and mechanism of initial thermal decomposition of nitrocellulose. J Therm Anal Calorim. 1995;45:501–9.CrossRefGoogle Scholar
  5. 5.
    Binke N, Rong L, Zhengquan Y, Yuan W, Rongzu YPH, Qingsen Y. Studies on the kinetics of the first order autocatalytic decomposition reaction of highly nitrated nitrocellulose. J Therm Anal Calorim. 1999;58:403–11.CrossRefGoogle Scholar
  6. 6.
    Paulik F, Paulik J, Arnold M. TG and TGT investigations of the decomposition of nitrocellulose under quasi-isothermal conditions. J Therm Anal Calorim. 1977;12:383.CrossRefGoogle Scholar
  7. 7.
    Rong L, Binke N, Yuan W, Zhengquan Y, Rongzu H. Estimation of the critical temperature of thermal explosion for the highly nitrated nitrocellulose using non-isothermal DSC. J Therm Anal Calorim. 1999;58:369–73.CrossRefGoogle Scholar
  8. 8.
    Phillips RW, Orlick CA, Steinberger R. The kinetics of the thermal decomposition of nitrocellulose. J Phys Chem. 1955;59:1034–9.CrossRefGoogle Scholar
  9. 9.
    Huwei L, Ruonong F. Studies on thermal decomposition of nitrocellulose by pyrolysis-gas chromatography. J Anal Pyrolysis. 1988;14:163–7.CrossRefGoogle Scholar
  10. 10.
    Pourmortazavi SM, Hosseini SG, Rahimi Nasrabadi M, Hajimirsadeghi SS, Momenian H. Effect of nitrate content on thermal decomposition of nitrocellulose. J Hazard Mater. 2009;162:1141–4.CrossRefGoogle Scholar
  11. 11.
    Lin CP, Shu CM. A comparison of thermal decomposition energy and nitrogen content of nitrocellulose in non-fat process of linters by DSC and EA. J Therm Anal Calorim. 2009;95:547–52.CrossRefGoogle Scholar
  12. 12.
    Meincke A, Hausdorf D, Gadsden N, Baumeister M, Derrick M, Newman R, Rizzo A. Early cellulose nitrate coatings on furniture of the Company of Modern Craftsmen. In: Keneghan B, Egan L (2007) Proceedings of the conference on plastics—looking at the future and learning from the past, Victoria and Albert Museum, London. London: Archetype Publications; 2008. p. 3.Google Scholar
  13. 13.
    Shashoua Y. Conservation of plastics, materials science, degradation and preservation. Oxford: Butterworth Heinemann and Elsevier; 2008. p. 178.Google Scholar
  14. 14.
    Volltrauer HN, Fontijn A. Low-temperature pyrolysis studies by chemiluminescence techniques real time nitrocellulose and PBX decomposition. Combust Flame. 1981;41:313–24.CrossRefGoogle Scholar
  15. 15.
    Ashby GE. Oxyluminescence from polymers. J Polym Sci. 1961;50:99–106.CrossRefGoogle Scholar
  16. 16.
    Barker RE, Daane JH, Rentzepis PM. Thermochemiluminescence of polycarbonate and polypropylene. J Polym Sci A. 1965;3:2033–45.CrossRefGoogle Scholar
  17. 17.
    David DJ. Simultaneous photothermal and differential thermal analysis. Thermochim Acta. 1972;3:277–89.CrossRefGoogle Scholar
  18. 18.
    Schard MP, Russell CA. Oxyluminescence of polymers. I. General behavior of polymers. J Appl Polym Sci. 1964;8:985–95.CrossRefGoogle Scholar
  19. 19.
    Reich L, Stivala SS. Elements of polymer degradation. New York: McGraw-Hill; 1971. p. 99.Google Scholar
  20. 20.
    Rychlá L, Rychlý J. New concepts in chemiluminescence at the evaluation of thermooxidative stability of polypropylene from isothermal and non-isothermal experiments. In: Jimenez A, Zaikov GE, editors. Polymer analysis and degradation. New York: Nova Science Publishers; 2000. p. 124.Google Scholar
  21. 21.
    Rychlý J, Matisová-Rychlá L, Tiemblo P, Gomez-Elvira J. The effect of physical parameters of isotactic polypropylene on its oxidizability measured by chemiluminescence method. Contribution to the spreading phenomenon. Polym Degrad Stab. 2001;71:253.CrossRefGoogle Scholar
  22. 22.
    Malíková M, Rychlý J, Matisová-Rychlá L, Csomorová K, Janigová I, Wilde HW. Assessing the progress of degradation of polyurethane by chemiluminescence. I. Unstabilised polyurethane. Polym Degrad Stab. 2010;95:2367–75.CrossRefGoogle Scholar
  23. 23.
    Wynne AM, Wendlandt WW. The thermal light emission properties of alathon. 1. Effect of experimental parameters. Thermochim Acta. 1976;14:61–9.CrossRefGoogle Scholar
  24. 24.
    Hsueh CH, Wendlandt WW. Effect of some experimental parameters on the oxyluminescence curves of selected materials. Thermochim Acta. 1976;99:37–42.CrossRefGoogle Scholar
  25. 25.
    Wendlandt WW. The oxyluminescence of polymers. A review. Thermochimica Acta. 1984;72:363–72.CrossRefGoogle Scholar
  26. 26.
    Hsueh CH, Wendlandt WW. The kinetics of oxyluminescence of selected polymers. Thermochim Acta. 1986;99:41–7.Google Scholar
  27. 27.
    Wendlandt WW. The oxyluminescence and kinetics of oxyluminescence of selected polymers. Thermochim Acta. 1983;71:129–37.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • Jozef Rychlý
    • 1
  • Agnes Lattuati-Derieux
    • 2
  • Lyda Matisová-Rychlá
    • 1
  • Katarína Csomorová
    • 1
  • Ivica Janigová
    • 1
  • Bertrand Lavédrine
    • 2
  1. 1.Polymer InstituteSlovak Academy of SciencesBratislavaSlovakia
  2. 2.Centre de Recherche sur la Conservation des Collections, Muséum National d’Histoire Naturelle, MCC, CNRSParisFrance

Personalised recommendations