Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 108, Issue 3, pp 1261–1272 | Cite as

Thermal and structural properties of surfactant–picrate compounds

Effect of the alkyl chain number on the same ammonium head group
  • Tea Mihelj
  • Zoran Štefanić
  • Vlasta TomašićEmail author
Article

Abstract

The novel surfactant–picrate compounds were synthesized and characterized by thermal and XRD analysis. The synthesis, based on the electrostatic interactions of components in polar solvents, was carried out using picric acid and cationic surfactants (dodecyltrimethylammonium, didodecyldimethylammonium, and tridodecylmethylammonium halide). The idea was to investigate the dependence of physico-chemical properties and thermal transitions of picrate–surfactant compounds with raising number of dodecyl chains sited on the same ammoniumm head group. The equimolar mixed aqueous solutions are characterized as lyotropic, strongly promoted by picrate anion. The main crystal structure feature of investigated picrates is layered structure with stacked aromatic rings of one picrate molecule on the top of the other one via strong π…π interactions and connection to the alkylammonium molecules with their nitro groups by C–H…O hydrogen bonds. Surfactant–picrate bilayer-like structures are interrupted with layers of polar heads and picrate counterions and the observed width of such a bilayers are functions of more complex structural behaviors which ensures alternation in space of equal numbers of positive and negative charges. Although some of the surfactants used posses thermotropic porperties, like examined tridodecylmethylammonium chloride, no thermotropic mesomorphism is detected in solid state of investigated surfactant–picrate compounds. The thermodynamic parameters of solid–liquid thermal transitions depend linear on the number of dodecyl chains, and for double- and triple-tailed picrate compounds the marked temporal hysteresis of the melt crystallization is registered.

Keywords

Thermal analysis Alkyl chain number Cationic surfactant Picrate Crystal structure 

Notes

Acknowledgements

This work was supported by the Ministry of the Science, Education, and Sport of the Republic of Croatia (Project Nos 098-0982915-2949 and 098-1191344-2943). We are grateful to Dr. Ellen Wachtel, Department of Materials and Interfaces, Weizmann Institute of Science, Israel, for carrying out the XRD experiments.

References

  1. 1.
    Olsher U, Feinberg H, Frollow F, Shoham G. The picrate anion as a versatile chelating counter-ion for the complexation of alkali and alkaline earth metal cations with ionophores: “The picrate effect”. Pure Appl Chem. 1996;68:1195–9.CrossRefGoogle Scholar
  2. 2.
    Farrell PG, Shahidi F, Casellato F, Vecchi C, Girelli A. DSC studies of aromatic hydrocarbon picrates. Thermochim Acta. 1979;33:275–80.CrossRefGoogle Scholar
  3. 3.
    Tomašić V, Tušek-Božić LJ, Višnjevac A, Kojić-Prodić B, Filipović-Vinceković N. Physicochemical properties of dodecylammonium picrate. J Colloid Interface Sci. 2000;227:427–36.CrossRefGoogle Scholar
  4. 4.
    Ohba S, Ito Y. 2-(4-Hydroxyphenyl)ethylammonium picrate. Acta Cryst E. 2002;58:584–5.CrossRefGoogle Scholar
  5. 5.
    Martin Britto Dhas SA, Natarajan S. Growth and characterization of a new potential second harmonic generation material from the amino acid family: l-Valinium picrate. Cryst Res Technol. 2008;43:869–73.CrossRefGoogle Scholar
  6. 6.
    Goto M, Kanno H, Sugaya E, Osa Y, Takayanagi H. Crystal structure of adenosinium picrate. Anal Sci. 2004;20:39–40.Google Scholar
  7. 7.
    Anitha K, Athimoolam S, Natarajan S. Pyridoxinium picrate. Acta Cryst C. 2006;62:426–8.CrossRefGoogle Scholar
  8. 8.
    Marchand AP, Hazlewood A, Huang Z, Vadlakonda SK, Rocha JDR, Power TD, et al. Stabilization of a K+-(bis cage annulated 20-crown-6) complex by bidentate picrate. Struct Chem. 2003;14:279–88.CrossRefGoogle Scholar
  9. 9.
    Nagarajan R. Molecular packing parameter and surfactant self-assembly: the neglected role of the surfactant tail. Langmuir. 2002;18:31–8.CrossRefGoogle Scholar
  10. 10.
    Ungar G, Tomašić V, Xie F, Zeng X-b. Structure of liquid crystalline aerosol-OT and its alkylammonium salts. Langmuir. 2009;25:11067–72.CrossRefGoogle Scholar
  11. 11.
    Terreros A, Galera-Gomez PA, Lopez-Cabaracos E. DSC and X-ray diffraction study of polymorphism in n-alkylammonium chlorides. J Therm Anal Calorim. 2000;61:341–50.CrossRefGoogle Scholar
  12. 12.
    Esson JM, Ramamurthy N, Meyerhoff ME. Polyelectrolyte-surfactant complexes: an aqueous titration method to model ion-pairing within polymeric membranes of polyion-sensitive electrodes. Anal Chim Acta. 2000;404:83–94.CrossRefGoogle Scholar
  13. 13.
    Ono Y, Kawasaki H, Annaka M, Maeda H. Effects of micelle-to-vesicle transitions on the degree of counterion binding. J Colloid Interface Sci. 2005;287:685–93.CrossRefGoogle Scholar
  14. 14.
    Marques EF, Regev O, Khan A, da Graca Miguel M, Lindman B. Vesicle formation and general phase behavior in the catanionic mixture SDS–DDAB–water. The cationicrich side. J Phys Chem B. 1999;103:8353–63.CrossRefGoogle Scholar
  15. 15.
    Harms K, Wolcado S. XCAD4-CAD4 data reduction. Germany: Universitiy of Marburg; 1995.Google Scholar
  16. 16.
    Farrugia LJ, Win GX. Suite for single crystal small molecule crystallography. J Appl Cryst. 1999;32:837–8.CrossRefGoogle Scholar
  17. 17.
    Sheldrick GM. SHELX97: program for the refinement of the crystal structures. Germany: Universitiy of Gottingen; 1997.Google Scholar
  18. 18.
    Spek AL. PLATON 98: a multipurpose crystallographic tool 101201 version. Utrecht, The Netherlands: University of Utrecht; 2001.Google Scholar
  19. 19.
    Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, et al. Mercury: visualization and analysis of crystal structures. J Appl Cryst. 2006;39:453–7.CrossRefGoogle Scholar
  20. 20.
    Finch A, Smith AE. Thermochemistry of picrates. III. Enthalpies of solution and solubities of picrate salts. Thermochim Acta. 1982;53:349–56.CrossRefGoogle Scholar
  21. 21.
    Everaert J, Persoons A. Dissociation mechanism of tetrabutylammonium picrate ion pairs in media of low polarity. 1. A sphere-in-continuum approach. J Phys Chem. 1981;85:3930–7.CrossRefGoogle Scholar
  22. 22.
    Khan MA. Hydrogen bonding and crystal packing trends in tetraalkylammonium halide-catechol complexes: synthesis, spectroscopic and crystal structure studies of Me4NC1-catechol, Et4NCl-catechol, Et4NBr-catechol and Pr4NBr-catechol complexes. J Mol Struct. 1986;145:203–18.CrossRefGoogle Scholar
  23. 23.
    Rupert LAM, Hoekstra D, Engberts JBFN. Fusogenic behavior of didodecyldimethylammonium bromide bilayer vesicles. J Am Chem Soc. 1985;107:2628–31.CrossRefGoogle Scholar
  24. 24.
    Kamitori S, Sumimoto V, Vongbupnimit K, Noguchi K, Okuyama K. Molecular and crystal-structures of dodecyltrimethylammonium bromide and its complex with P-Phenylphenol. Mol Cryst Liq Cryst. 1997;300:31–43.CrossRefGoogle Scholar
  25. 25.
    Okuyana K, Soboi Y, Ijima N, Hirabayashi K, Kunitake T, Kajiyama T. Molecular and crystal structure of the lipid-model amphiphile, dioctadecyldimethylammonium bromide monohydrate. Bull Chem Soc Jpn. 1988;61:1485–90.CrossRefGoogle Scholar
  26. 26.
    Alami E, Levy H, Zana R, Weber P, Skoulios A. A new smectic mesophase with two dimensional tetragonal symmetry from dialkyldimethylammonium bromides: ST. Liq Cryst. 1993;13:201–12.CrossRefGoogle Scholar
  27. 27.
    Iwamoto K, Ohnuki Y, Sawada K, Senō M. Solid-solid phase transitions of long-chain n-alkyltrimethylammonium halides. Mol Cryst Liq Cryst. 1981;73:95–103.CrossRefGoogle Scholar
  28. 28.
    Malliaris A, Christias C, Margomenou-Leonidopoulou G, Paleos CM. Single chain quaternary ammonium salts exhibiting thermotropic mesomorphism and organization in water. Mol Cryst Liq Cryst. 1982;82:161–6.CrossRefGoogle Scholar
  29. 29.
    Gilson DFR, Kertes AS, Manley RSJ, Tsau J, Donnay G. Polymorphism in n-alkylammonium chlorides: X-ray powder diffraction studies. Can J Chem. 1976;54:765–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • Tea Mihelj
    • 1
  • Zoran Štefanić
    • 1
  • Vlasta Tomašić
    • 1
    Email author
  1. 1.Department of Physical ChemistryRuđer Bošković InstituteZagrebCroatia

Personalised recommendations