Journal of Thermal Analysis and Calorimetry

, Volume 107, Issue 2, pp 555–560 | Cite as

Effect of mercaptopropionic acid as linker on structural, thermal, and optical properties of TiO2–CdSe nanocomposites

  • S. K. Arya
  • Tanvi Vats
  • Shailesh N. Sharma
  • Kulvir Singh
  • A. K. Narula


In this study, we have studied the stability of TiO2–CdSe nanocomposites in which the individual moieties are linked using a bifunctional linker (mercaptopropionic acid). Nanoparticles of TiO2 and CdSe are synthesized by sol–gel and one pot methods. The equimolar amount of the above particles is utilized to prepare nanocomposites with and without linker. These samples are characterized for their structural, thermal, and optical properties using X-ray diffraction (XRD), differential thermal analysis (DTA), thermogravimetric analysis (TG), Fourier transform infra-red spectroscopy (FTIR), and UV–Vis spectroscopy. The average particle size of TiO2 and CdSe are 16 and 23 nm, respectively. The addition of a bifunctional linker shows remarkable effect on the properties of TiO2–CdSe nanocomposites.


Bifunctional linker Structural, thermal, and optical stability 


  1. 1.
    Fisher AC, Peter LM, Ponomarev EA, Walker AB, Wijayantha KGU. Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanocrystalline TiO2 solar cells. J Phys Chem B. 2000;4:949–58.CrossRefGoogle Scholar
  2. 2.
    Biancardo M, Argazzi R, Bignozzi CA. Solid-state photochromic device based on nanocrystalline TiO2 functionalized with electron donor–acceptor species. Inorg Chem. 2005;44:9619–21.CrossRefGoogle Scholar
  3. 3.
    Yang T, Lin H, Wei B, Wu C, Lin C. Enhancement of the gas sensing properties of nano-TiO2. Rev Adv Mater Sci. 2003;4:48–54.CrossRefGoogle Scholar
  4. 4.
    Wold A. Photocatalytic properties of titanium dioxide (TiO2). Chem Mater. 1993;5:280–3.CrossRefGoogle Scholar
  5. 5.
    Zhang Z, Wang C, Zakaria R, Ying J. Role of particle size in nanocrystalline TiO2-based photocatalysts. J Phys Chem B. 1998;102:10871–8.CrossRefGoogle Scholar
  6. 6.
    Khan MA, Jung HT, Yang OB. Synthesis and characterization of ultrahigh crystalline TiO2 nanotubes. J Phys Chem B. 2006;110:6626–30.CrossRefGoogle Scholar
  7. 7.
    Sun Y, Li A, Qi M, Zhang L, Yao X. High surface area anatase titania nanoparticles prepared by MOCVD. Mater Sci Eng B. 2001;86:185–8.CrossRefGoogle Scholar
  8. 8.
    Xia B, Huang H, Xie Y. Heat treatment on TiO2 nanoparticles prepared by vapor-phase hydrolysis. Mater Sci Eng B. 1999;57:150–4.CrossRefGoogle Scholar
  9. 9.
    Oskam G, Nellure A, Penn RL, Searson PC. The growth kinetics of TiO2 nanoparticles from titania(IV) alkoxide at high water/titanium ratio. J Phys Chem B. 2003;107:1734–8.CrossRefGoogle Scholar
  10. 10.
    He D, Lin F. Preparation and photocatalytic activity of anatase TiO2 nanocrystallites with high thermal stability. Mater Lett. 2007;61:3385–7.CrossRefGoogle Scholar
  11. 11.
    Kormann C, Bahnemann DW, Hoffmann MR. Preparation and characterization of quantum size TiO2. J Phys Chem. 1988;92:5196–201.CrossRefGoogle Scholar
  12. 12.
    Yanagisawa K, Ovenstone J. Crystallization of anatase from amorphous titania using the hydrothermal technique: effects of starting material and temperature. J Phys Chem B. 1999;103:7781–7.CrossRefGoogle Scholar
  13. 13.
    Hu Y, Tsai HL, Huang CL. Phase transformation of precipitated TiO2 nanoparticles. Mater Sci Eng A. 2003;344:209–14.CrossRefGoogle Scholar
  14. 14.
    Shen Q, Sato T, Hashimoto M, Chen C, Toyoda T. Photoacoustic and photo electrochemical characterization of CdSe-sensitized TiO2 electrodes composed of nanotubes and nanowires. Thin Solid Films. 2006;499:299–305.CrossRefGoogle Scholar
  15. 15.
    Robel I, Subramanian V, Kuno M, Kamat PV. Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J Am Chem Soc. 2006;128:2385–93.CrossRefGoogle Scholar
  16. 16.
    Bang JH, Kamat PV. Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe. ACS Nano. 2009;3:1467–76.CrossRefGoogle Scholar
  17. 17.
    Kongkanand A, Tvrdy K, Takechi K, Kuno K, Kamat PV. Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe–TiO2 architecture. J Am Chem Soc. 2008;130(12):4007–15.CrossRefGoogle Scholar
  18. 18.
    Natan MJ, Thackeray JW, Wrighton MS. Interaction of thiols with n-type cadmium sulfide and n-type cadmium selenide in aqueous solutions: adsorption of thiolate anion and efficient photoelectrochemical oxidation to disulfides. J Phys Chem B. 1986;90(17):4089–98.CrossRefGoogle Scholar
  19. 19.
    Granot E, Patolsky F, Willner I. Electrochemical assembly of a CdS semiconductor nanoparticle monolayer on surfaces: structural properties and photoelectrochemical applications. J Phys Chem B. 2004;108(19):5875–81.CrossRefGoogle Scholar
  20. 20.
    Lawless D, Kapoor S, Meisel D. Bifunctional capping of CdS nanoparticles and bridging to TiO2. J Phys Chem. 1995;99(25):10329–35.CrossRefGoogle Scholar
  21. 21.
    Mann JR, Watson DF. Adsorption of CdSe nanoparticles to thiolated TiO2 surfaces: influence of intralayer disulfide formation on CdSe surface coverage. Langmuir. 2007;23(22):10924–8.CrossRefGoogle Scholar
  22. 22.
    Subramanian V, Wolf EE, Kamat PV. Catalysis with TiO2/Au nanocomposites. Effect of metal particle size on the fermi level equilibration. J Am Chem Soc. 2004;126:4943–50.CrossRefGoogle Scholar
  23. 23.
    Murray CB, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperse CdE (E = sulphur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc. 1993;115:8706–15.CrossRefGoogle Scholar
  24. 24.
    Cullity BD. Elements of X-rays diffraction. Reading: Addison Wesley; 1978.Google Scholar
  25. 25.
    Tong T, Zhang J, Tian B, Chen F, He D. Preparation and characterization of anatase TiO2 microspheres with porous frameworks via controlled hydrolysis of titanium alkoxide followed by hydrothermal treatment. Mater Lett. 2008;62:2970–2.CrossRefGoogle Scholar
  26. 26.
    Deacon GB, Green JHS. Vibrational spectra of ligands and complexes. II. Infra-red spectra (3650–375 cm−1 of triphenyl-phosphine, triphenylphosphine oxide, and their complexes. Spectrochim Acta. 1968;24a:845–52.Google Scholar
  27. 27.
    Becerra LR, Murray CB, Griffin RG, Bawendi MG. Investigation of the surface morphology of capped CdSe nanocrystallites by 31 P nuclear magnetic resonance. J Chem Phys. 1994;100:3297–300.CrossRefGoogle Scholar
  28. 28.
    Dibbell RS, Soja GR, Hoth RM, Watson DF. Photocatalytic patterning of monolayers for the site-selective deposition of quantum dots onto TiO2 surfaces. Langmuir. 2007;23:3432–9.CrossRefGoogle Scholar
  29. 29.
    Deorsola FA, Valluari D. Synthesis of TiO2 nanoparticles through gel combustion process. J Mater Sci. 2008;43:3274–8.CrossRefGoogle Scholar
  30. 30.
    Marinescu C, Safronia A, Rusti C, Piticescu R, Badilita V, Vasile E, Baies R, Tanasescu S. DSC investigation of nanocrystalline TiO2 powder. J Therm Anal Calorim. 2011;103:49–57.CrossRefGoogle Scholar
  31. 31.
    Tauc J. In: Tauc J, editor. Amorphous and liquid semiconductors. New York: Plenum; 1974. p. 175.Google Scholar
  32. 32.
    Venkatachalam N, Palanichamy M, Murugesan V. Sol–gel preparation and characterization of alkaline earth metal doped nano TiO2: efficient photocatalytic degradation of 4-chlorophenol. J Mol Catal A. 2007;273:177–85.CrossRefGoogle Scholar
  33. 33.
    Wang H, Lewis JP. Second generation photocatalytic materials: anion doped TiO2. J Phys Condens Matter. 2006;18:421.CrossRefGoogle Scholar
  34. 34.
    Kavan L, Graitzel M, Gilbert SE, Klemenz C, Scheel HJ. Electrochemical and photoelectrochemical investigation of single-crystal anatase. J Am Chem Soc. 1996;118(28):6716–23.CrossRefGoogle Scholar
  35. 35.
    Asahi R, Taga Y, Mannstadt W, Freeman AJ. Electronic and optical properties of anatase TiO2. Phys Rev B. 2000;61:7459–65.CrossRefGoogle Scholar
  36. 36.
    Serpone N, Lawless D, Khairutdinovt R. Size effects on the photophysical properties of colloidal anatase TiO2 particles: Size quantization versus direct transitions in this indirect semiconductor? J Phys Chem. 1995;99:16646–54.CrossRefGoogle Scholar
  37. 37.
    Jhonson SR, Tidies T. Temperature dependence of the Urbach edge in GsAs. J Appl Phys. 1995;78:5609–11.CrossRefGoogle Scholar
  38. 38.
    Urbach F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys Rev. 1953;92:1324.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • S. K. Arya
    • 1
  • Tanvi Vats
    • 2
  • Shailesh N. Sharma
    • 3
  • Kulvir Singh
    • 1
  • A. K. Narula
    • 2
  1. 1.School of Physics and Material ScienceThapar UniversityPatialaIndia
  2. 2.University School of Basic and Applied SciencesGuru Gobind Singh Indraprastha UniversityDelhiIndia
  3. 3.Physics of Energy Harvesting DivisionNational Physical LaboratoryNew DelhiIndia

Personalised recommendations