Thermal study on electrospun polyvinylpyrrolidone/ammonium metatungstate nanofibers: optimising the annealing conditions for obtaining WO3 nanofibers

  • Imre Miklós Szilágyi
  • Eero Santala
  • Mikko Heikkilä
  • Marianna Kemell
  • Timur Nikitin
  • Leonid Khriachtchev
  • Markku Räsänen
  • Mikko Ritala
  • Markku Leskelä
Article

Abstract

This article demonstrates how important it is to find the optimal heating conditions when electrospun organic/inorganic composite fibers are annealed to get ceramic nanofibers in appropriate quality (crystal structure, composition, and morphology) and to avoid their disintegration. Polyvinylpyrrolidone [PVP, (C6H9NO)n] and ammonium metatungstate [AMT, (NH4)6[H2W12O40nH2O] nanofibers were prepared by electrospinning aqueous solutions of PVP and AMT. The as-spun fibers and their annealing were characterized by TG/DTA-MS, XRD, SEM, Raman, and FTIR measurements. The 400–600 nm thick and tens of micrometer long PVP/AMT fibers decomposed thermally in air in four steps, and pure monoclinic WO3 nanofibers formed between 500 and 600 °C. When a too high heating rate and heating temperature (10 °C min−1, 600 °C) were used, the WO3 nanofibers completely disintegrated. At lower heating rate but too high temperature (1 °C min−1, 600 °C), the fibers broke into rods. If the heating rate was adequate, but the annealing temperature was too low (1 °C min−1, 500 °C), the nanofiber morphology was excellent, but the sample was less crystalline. When the optimal heating rate and temperature (1 °C min−1, 550 °C) were applied, WO3 nanofibers with excellent morphology (250 nm thick and tens of micrometer long nanofibers, which consisted of 20–80 nm particles) and crystallinity (monoclinic WO3) were obtained. The FTIR and Raman measurements confirmed that with these heating parameters the organic matter was effectively removed from the nanofibers and monoclinic WO3 was present in a highly crystalline and ordered form.

Keywords

WO3 PVP Annealing TG/DTA-MS XRD SEM Raman FTIR 

References

  1. 1.
    Yang P, Yan R, Fardy M. Semiconductor nanowire: what’s next? Nano Lett. 2010;10:1529–36.CrossRefGoogle Scholar
  2. 2.
    Li JY, Dai H, Li Q, Zhong XH, Ma XF, Meng J, Cao XQ. Lanthanum zirconate nanofibers with high sintering-resistance. Mater Sci Eng B. 2006;133:209–12.CrossRefGoogle Scholar
  3. 3.
    Ruda HE, Polanyi JC, Yang JSY, Wu Z, Philipose U, Xu T, Yang S, Kavanagh KL, Liu JQ, Yang L, Wang Y, Robbie K, Yang J, Kaminska K, Cooke DG, Hegmann FA, Budz AJ, Haugen HK. Developing 1D nanostructure arrays for future nanophotonics. Nanoscale Res Lett. 2006;1:99–119.CrossRefGoogle Scholar
  4. 4.
    Choi KJ, Jang HW. One-dimensional oxide nanostructures as gas-sensing materials: review and issues. Sensors. 2010;10:4083–99.CrossRefGoogle Scholar
  5. 5.
    Mieszawska AJ, Jalilian R, Sumanasekera GU, Zamborini FP. The synthesis and fabrication of one-dimensional nanoscale heterojunctions. Small. 2007;3:722–56.CrossRefGoogle Scholar
  6. 6.
    Morales AM, Lieber CM. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science. 1998;279:208–11.CrossRefGoogle Scholar
  7. 7.
    Ye JF, Qi LM. Solution-phase synthesis of one-dimensional semiconductor nanostructures. J Mater Sci Tech. 2008;24:529–40.CrossRefGoogle Scholar
  8. 8.
    Mozalev A, Khatko V, Bittencourt C, Hassel AW, Gorokh G, Llobet E, Correig X. Nanostructured tungsten oxide semiconductor prepared by anodic and thermal processing of Al/W/Ti thin-film layers. Chem Mater. 2008;20:6482–93.CrossRefGoogle Scholar
  9. 9.
    Kemell M, Härkönen E, Pore V, Ritala M, Leskelä M. Ta2O5- and TiO2-based nanostructures made by atomic layer deposition. Nanotechnology. 2010;21:035301, 8pp.Google Scholar
  10. 10.
    Zhang Z, Shao C, Gao F, Li X, Liu Y. Enhanced ultraviolet emission from highly dispersed ZnO quantum dots embedded in poly(vinyl pyrrolidone) electrospun nanofibers. J Colloid Interface Sci. 2010;347:215–20.CrossRefGoogle Scholar
  11. 11.
    Sangmanee M, Maensiri S. Nanostructures and magnetic properties of cobalt ferrite (CoFe2O4) fabricated by electrospinning. Appl Phys A. 2009;97:167–77.CrossRefGoogle Scholar
  12. 12.
    Nuansing W, Ninmuang S, Jarerboon W, Maensiri S, Seraphin S. Magnesium ferrite (MgFe2O4) nanostructures fabricated by electrospinning. Mater Sci Eng B. 2006;131:147–55.CrossRefGoogle Scholar
  13. 13.
    Azad AM, Matthews T, Swary J. Processing and characterization of electrospun Y2O3-stabilized ZrO2 (YSZ) and Gd2O3-doped CeO2 (GDC) nanofibers. Mater Sci Eng B. 2005;123:252–8.CrossRefGoogle Scholar
  14. 14.
    Hou Z, Li C, Yang J, Lian H, Yang P, Chai R, Cheng Z, Lin J. One-dimensional CaWO4 and CaWO4:Tb3+ nanowires and nanotubes: electrospinning preparation and luminescent properties. J Mater Chem. 2009;19:2737–46.CrossRefGoogle Scholar
  15. 15.
    Piperno S, Passacantando M, Santucci S, Lozzi L, La Rosa S. WO3 nanofibers for gas sensing applications. J Appl Phys. 2007;101:124504, 4pp.Google Scholar
  16. 16.
    Shim HS, Kim JW, Sung YE, Kim WB. Electrochromic properties of tungsten oxide nanowires fabricated by electrospinning method. Sol Energy Mater Sol Cells. 2009;93:2062–8.CrossRefGoogle Scholar
  17. 17.
    Wang G, Ji Y, Huang Y, Yang X, Gouma PI, Dudley M. Fabrication and characterization of polycrystalline WO3 nanofibers and their application for ammonia sensing. J Phys Chem B. 2006;110:23777–82.CrossRefGoogle Scholar
  18. 18.
    Ponhan W, Maensiri S. Fabrication and magnetic properties of electrospun copper ferrite (CuFe2O4) nanofibers. Solid State Sci. 2009;11:479–84.CrossRefGoogle Scholar
  19. 19.
    Qizheng C, Xiangting D, Jinxian W, Mei L. Direct fabrication of cerium oxide hollow nanofibers by electrospinning. J Rare Earths. 2008;26:664–9.CrossRefGoogle Scholar
  20. 20.
    Maensiri S, Nuansing W, Klinkaewnarong J, Laokul P, Khemprasit J. Nanofibers of barium strontium titanate (BST) by sol–gel processing and electrospinning. J Colloid Interface Sci. 2006;297:578–83.CrossRefGoogle Scholar
  21. 21.
    Lu X, Liu X, Zhang W, Wang C, Wei Y. Large-scale synthesis of tungsten oxide nanofibers by electrospinning. J Colloid Interface Sci. 2006;298:996–9.CrossRefGoogle Scholar
  22. 22.
    NIST Chemistry Webbook Standard Reference Database, No 69, 01 June. 2005. http://webbooknistgov/chemistry.
  23. 23.
    Maensiri S, Laokul P, Promarak V. Synthesis and optical properties of nanocrystalline ZnO powders by a simple method using zinc acetate and poly(vinyl pyrrolidone). J Cryst Growth. 2006;289:102–6.CrossRefGoogle Scholar
  24. 24.
    Zhenfeng C, Huijan R, Guixia L, Guangyan G. Synthesis and characterization of terbium–trimesic acid luminescent complex in polyvinylpyrrolidone matrix. J Rare Earths. 2006;24:724–7.CrossRefGoogle Scholar
  25. 25.
    Li T, Zhong G, Fu R, Yang Y. Synthesis and characterization of Nafion/cross-linked PVP semi-interpenetrating polymer network membrane for direct methanol fuel cell. J Membr Sci. 2010;354:189–97.CrossRefGoogle Scholar
  26. 26.
    Zhu XF, Lu P, Chen W, Dong J. Studies of UV crosslinked poly(N-vinylpyrrolidone) hydrogels by FTIR, Raman and solid-state NMR spectroscopies. Polymer. 2010;51:3054–63.CrossRefGoogle Scholar
  27. 27.
    Fini A, Cavallari C, Ospitali F. Effect of ultrasound on the compaction of pharmaceutics and biopharmaceutics. Eur J Pharm Biopharm. 2008;70:409–20.CrossRefGoogle Scholar
  28. 28.
    Karavas E, Georgarakis M, Docoslis A, Combining BikiarisD, EM S. TEM, and micro-Raman techniques to differentiate between the amorphous molecular level dispersions and nanodispersions of a poorly water-soluble drug within a polymer matrix. Int J Pharm. 2007;340:76–83.CrossRefGoogle Scholar
  29. 29.
    Feldstein MM. Adhesive hydrogels: structure, properties, and applications (a review). Polym Sci Ser A. 2004;46:1165–91.Google Scholar
  30. 30.
    Silva MF, da Silva CA, Fogo FC, Pineda EAG, Hechenleitner AAW. Thermal and FTIR study of polyvinylpyrrolidone/lignin blends. J Therm Anal Calorim. 2005;79:367–70.CrossRefGoogle Scholar
  31. 31.
    Lu F, Liu J, Xu J. Synthesis of chain-like Ru nanoparticle arrays and its catalytic activity for hydrogenation of phenol in aqueous media. Mater Chem Phys. 2008;108:369–74.CrossRefGoogle Scholar
  32. 32.
    Azhari SJ, Diab MA. Thermal degradation and stability of poly(4-vinylpyridine) homopolymer and copolymers of 4-vinylpyridine with methyl acrylate. Polym Degrad Stabil. 1998;60:253–6.CrossRefGoogle Scholar
  33. 33.
    Mendes LC, Rodrigues RC, Silva EP. Thermal, structural and morphological assessment of PVP/HA composites. J Them Anal Calorim. 2010;101:899–905.CrossRefGoogle Scholar
  34. 34.
    Jablonski AE, Lang AJ, Vyazovkin S. Isoconversional kinetics of degradation of polyvinylpyrrolidone used as a matrix for ammonium nitrate stabilization. Thermochim Acta. 2008;474:78–80.CrossRefGoogle Scholar
  35. 35.
    Sionkowska A, Kozlowska J, Planecka A, Skkopinska-Wisniewska J. Photochemical stability of poly(vinyl pyrrolidone) in the presence of collagen. J Polym Degrad Stabil. 2008;93:2127–32.CrossRefGoogle Scholar
  36. 36.
    Aggour YA. Copolymerization and characterization of ethylene glycol allenyl methyl ether with N-vinyl pyrrolidone. J Macromol Sci A. 1998;35:1403–13.CrossRefGoogle Scholar
  37. 37.
    Liu C, Xiao C, Liang H. Properties and structure of PVP–lignin “blend films”. J Appl Polym Sci. 2005;95:1405–11.CrossRefGoogle Scholar
  38. 38.
    Lamastra FR, Nanni F, Camilli L, Matassa R, Carbone M, Gusmano G. Morphology and structure of electrospun CoFe2O4/multi-wall carbon nanotubes composite nanofibers. Chem Eng J. 2010;162:430–5.CrossRefGoogle Scholar
  39. 39.
    Feng W, Tao H, Liu Y, Liu Y. tructure and optical behavior of nanocomposite hybrid films of well monodispersed ZnO nanoparticles into poly (vinylpyrrolidone). J Mater Sci Technol. 2006;22:230–4.CrossRefGoogle Scholar
  40. 40.
    Sivaiah K, Rudremadevi BH, Bubbhudu S, Kumar GB, Varadarajulu A. Structural, thermal and optical properties of Cu2+ and Co2+: PVP polymer films. Ind J Pure Appl Phys. 2010;48:658–62.Google Scholar
  41. 41.
    Jing C, Hou J, Zhang Y, Xu X. Preparation of thick, crack-free germanosilicate glass films by polyvinylpyrrolidone and study of the UV-bleachable absorption band. J Non Cryst Solids. 2007;353:4128–36.CrossRefGoogle Scholar
  42. 42.
    Jing C, Xu X, Hou J. Preparation of compact Al2O3 film on metal for oxidation resistance by polyvinylpyrrolidone. J Sol Gel Sci Technol. 2007;43:321–7.CrossRefGoogle Scholar
  43. 43.
    Du YK, Yang P, Mou ZG, Hua NP, Jiang L. Thermal decomposition behaviors of PVP coated on platinum nanoparticles. J Appl Polym Sci. 2006;99:23–6.CrossRefGoogle Scholar
  44. 44.
    Zhang Z, Li X, Wang C, Wei L, Liu Y, Shao C. ZnO hollow nanofibers: fabrication from facile single capillary electrospinning and applications in gas sensors. J Phys Chem C. 2009;113:19397–403.CrossRefGoogle Scholar
  45. 45.
    Bogatyrev VM, Borisenko NV, Pokrovskii VA. Thermal degradation of polyvinylpyrrolidone on the surface of pyrogenic silica. Russ J Appl Chem. 2001;74:839–44.CrossRefGoogle Scholar
  46. 46.
    Mansour SAA, Mohamed MA. Thermal decomposition and the creation of reactive solid surfaces. V. The genesis course of the WO3 catalyst from its ammonium paratungstate precursor. Thermochim Acta. 1988;129:187–96.CrossRefGoogle Scholar
  47. 47.
    French GJ, Sale FR. A re-investigation of the thermal decomposition of ammonium paratungstate. J Mater Sci. 1981;16:3427–36.CrossRefGoogle Scholar
  48. 48.
    Fait MJG, Lunk HJ, Feist M, Schneider M, Dann JN, Frisk TA. Thermal decomposition of ammonium paratungstate tetrahydrate under non-reducing conditions. Characterization by thermal analysis, X-ray diffraction and spectroscopic methods. Thermochim Acta. 2008;469:12–22.CrossRefGoogle Scholar
  49. 49.
    Lassner E, Schubert WD. Tungsten properties, chemistry, technology of the element, alloys, and chemical compounds. New York: Kluwer Academic/Plenum Publishers; 1999.Google Scholar
  50. 50.
    van Put JW. Crystallisation and processing of ammonium paratunsgate (APT). Int J Refract Met Hard Mater. 1995;13:61–76.CrossRefGoogle Scholar
  51. 51.
    Szilágyi IM, Madarász J, Hange F, Pokol G. On-line evolved gas analyses (EGA by TG-FTIR and TG/DTA-MS) and solid state (FTIR, XRD) studies on thermal decomposition and partial reduction of ammonium paratungstate tetrahydrate. Solid State Ion. 2004;172:583–6.CrossRefGoogle Scholar
  52. 52.
    Madarász J, Szilágyi IM, Hange F, Pokol G. Comparative evolved gas analyses (TG-FTIR, TG/DTA-MS) and solid state (FTIR, XRD) studies on thermal decomposition of ammonium paratungstate tetrahydrate (APT) in air. J Anal Appl Pyrol. 2004;72:197–201.CrossRefGoogle Scholar
  53. 53.
    Szilágyi IM, Madarász J, Hange F, Pokol G. Partial thermal reduction of ammonium paratungstate tetrahydrate. J Therm Anal Calorim. 2007;88:139–44.CrossRefGoogle Scholar
  54. 54.
    Szilágyi IM, Hange F, Madarász J, Pokol G. In situ HT-XRD study on the formation of hexagonal ammonium tungsten bronze by partial reduction of ammonium paratungstate tetrahydrate. Eur J Inorg Chem. 2006;17:3413–8.CrossRefGoogle Scholar
  55. 55.
    Peters F, Gmelin L, Meyer RJ. Gmelins Handbuch der Anorganischen Chemie. Stickstoff, System Nummer 4. Berlin: Verlag Chemie GmbH; 1936. pp. 645–683.Google Scholar
  56. 56.
    Szilágyi IM, Madarász J, Király P, Tárkányi G, Tóth AL, Szabó A, Varga-Josepovits K, Pokol G. Stability and controlled composition of hexagonal WO3. Chem Mater. 2008;20:4116–25.CrossRefGoogle Scholar
  57. 57.
    Szilágyi IM, Sakó I, Király P, Tárkányi G, Tóth AL, Szabó A, Varga-Josepovits K, Madarász J, Pokol G. Phase transformations of ammonium tungsten bronzes. J Therm Anal Calorim. 2009;98:707–16.CrossRefGoogle Scholar
  58. 58.
    ICDD (International Centre for Diffraction Data) Powder Diffraction File, Release 2008.Google Scholar
  59. 59.
    Zhang HY, Xu L, Wang EB, Jiang M, Wu AG, Li Z. Photochromic behavior and luminescent properties of novel hybrid organic–inorganic film doped with Preyssler’s heteropoly acid H12[EuP5W30O110] and polyvinylpyrrolidone. Mater Lett. 2003;57:1417–22.CrossRefGoogle Scholar
  60. 60.
    Li Y, Li YG, Zhang ZM, Wu Q, Wang EB. A new polyoxotungstate-based W72V30 spherical cage. Inorg Chem Commun. 2009;12:864–7.CrossRefGoogle Scholar
  61. 61.
    Duplyakin VK, Baklanova ON, Chirkova OA, Antonicheva NV, Arbuzov AB, Voitenko NN, Drozdov VA, Likholobov VA. Interaction of nickel hydroxocarbonate, ammonium paramolybdate, and ammonium metatungstate under mechanical activation. Kinet Catal. 2010;51:126–30.CrossRefGoogle Scholar
  62. 62.
    Sunita G, Devassy BM, Vinu A, Sawant DP, Balasubramanian VV, Halligudi SB. Synthesis of biodiesel over zirconia-supported isopoly and heteropoly tungstate catalysts. Catal Commun. 2008;9:696–702.CrossRefGoogle Scholar
  63. 63.
    Sarish S, Devassy BM, Böhringer W, Feltcher J, Halligudi SB. Liquid-phase alkylation of phenol with long-chain olefins over WOx/ZrO2 solid acid catalysts. J Mol Catal A. 2005;240:123–31.Google Scholar
  64. 64.
    Shijun L, Qiyuan C, Oingmin Z, Songqin L. Raman spectral study on isopolytungstates in aqueous solution. Trans Nonferr Met Soc China. 1998;8:688–92.Google Scholar
  65. 65.
    Bukoski RD, Shearin S, Jackson WF, Pamarthi MF. Inhibition of Ca2+-induced relaxation by oxidized tungsten wires and paratungstate. J Pharmacol Exp Ther. 2001;299:343–50.Google Scholar
  66. 66.
    Weiner H, Lunk HJ, Friese R, Hartl H. Synthesis, crystal structure, and solution stability of Keggin-type heteropolytungstates (NH4)6Ni0.5II[α-FeIIIO4W11O30NiIIO5(OH2)]·nH2O, (NH4)7Zn0.5[α-ZnO4W11O30ZnO5(OH2)]·nH2O, and (NH4)7Ni0.5II[α-ZnO4W11O30NiIIO5(OH2)]·nH2O (n ≈ 18). Inorg Chem. 2005;44:7751–61.CrossRefGoogle Scholar
  67. 67.
    Scheithauer M, Graselli RK, Knözinger H. Genesis and structure of WOx/ZrO2 solid acid catalysts. Langmuir. 1998;14:3019–29.CrossRefGoogle Scholar
  68. 68.
    Faria DLA, Gil HAC, de Queiróz AAA. The interaction between polyvinylpyrrolidone and I2 as probed by Raman spectroscopy. J Mol Struct. 1999;479:93–8.CrossRefGoogle Scholar
  69. 69.
    Daniel MF, Desbat B, Lassegues JC, Gerand B, Figlarz M. Infrared and Raman study of WO3 tungsten trioxides, and WO3 xH2O tungsten trioxide hydrates. J Solid State Chem. 1987;67:235–47.CrossRefGoogle Scholar
  70. 70.
    Santato C, Odziemkowski M, Ulmann M, Augustynski J. Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications. J Am Chem Soc. 2001;123:10639–49.CrossRefGoogle Scholar
  71. 71.
    Ramana CV, Utsunomiya S, Ewing RC, Julien CM, Becker U. Structural stability and phase transitions in WO3 thin films. J Phys Chem B. 2006;110:10430–5.CrossRefGoogle Scholar
  72. 72.
    Siciliano T, Tepore A, Micocci G, Serra A, Manno D, Filippo E. WO3 gas sensors prepared by thermal oxidization of tungsten. Sens Actuator B. 2008;133:321–6.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • Imre Miklós Szilágyi
    • 1
    • 2
  • Eero Santala
    • 1
  • Mikko Heikkilä
    • 1
  • Marianna Kemell
    • 1
  • Timur Nikitin
    • 1
  • Leonid Khriachtchev
    • 1
  • Markku Räsänen
    • 1
  • Mikko Ritala
    • 1
  • Markku Leskelä
    • 1
  1. 1.Department of ChemistryUniversity of HelsinkiHelsinkiFinland
  2. 2.Materials Structure and Modeling Research Group of the Hungarian Academy of Sciences, Department of Inorganic and Analytical ChemistryBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations