Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 104, Issue 3, pp 929–936 | Cite as

Edible wheat gluten (WG) protein films

Preparation, thermal, mechanical and spectral properties
  • S. C. Mojumdar
  • C. Moresoli
  • L. C. Simon
  • R. L. Legge
Article

Abstract

Commercial wheat gluten (WG) films, hard wheat gluten films and soft wheat gluten films, plasticized with glycerol have been cast from water–ethanol solutions. The effect of aging on various film properties has been investigated. The films were aged for about 6 months at 50% relative humidity and ~25 °C, and the mechanical (tensile strength and the percentage of elongation at break (E b)), thermal (TG and DSC) and Attenuated Total Reflectance (ATR)-FTIR spectral properties have been studied. Changes in the protein structure were determined by ATR-FTIR spectroscopy. Films from soft WG exhibited the highest E b (508%) and the highest TS (6.33 MPa). The TG analysis results show that the moisture content in all three kinds of WG protein films is about 5%. The absence of the glycerol phase transition in DSC curves implies that there is no separate phase containing glycerol in the WG protein-glycerol films with 40% glycerol.

Keywords

DSC TG FTIR Tensile strength Elongation at break WG protein films 

Notes

Acknowledgements

The authors thank OMAFRA—Bioproducts Research Program, Ontario Bean Producer’s Marketing Board, and Ontario Wheat Producers for financial support.

References

  1. 1.
    Kayserilioglu BS, Bakir U, Yilmaz L, Akkas N. Drying temperature and relative humidity effects on wheat gluten film properties. J Agric Food Chem. 2003;51:964–8.CrossRefGoogle Scholar
  2. 2.
    Gennadios A, Brandenburg AH, Weller CL, Testin RF. Effect of pH on properties of wheat gluten and soy protein isolate films. J Agric Food Chem. 1993;41:1835–9.CrossRefGoogle Scholar
  3. 3.
    Gennadios A, Weller CL. Edible films and coatings from wheat and corn proteins. Food Technol. 1990;44(10):63–9.Google Scholar
  4. 4.
    Park SK, Hettiarachchy NS, Were L. Degradation behavior of soy protein–wheat gluten films in simulated soil conditions. J Agric Food Chem. 2000;48:3027–31.CrossRefGoogle Scholar
  5. 5.
    Gennadios A. Protein-based films and coatings. CRC Press, 2002;1:1–650.Google Scholar
  6. 6.
    Olabarrieta I. Strategies to improve the aging, barrier and mechanical properties of chitosan, whey and wheat gluten protein films, Ph.D. Thesis, KTH fibre and polymer technology, Stockholm. 2005;1:1–74.Google Scholar
  7. 7.
    Gao C, Standing M, Wellner N, Parker ML, Noel TR, Mills ENC, Belton PS. Plasticization of a protein-based film by glycerol: a spectroscopic, mechanical, and thermal study. J Agric Food Chem. 2006;54:4611–6.CrossRefGoogle Scholar
  8. 8.
    Amend T, Belitz H-D, Kurthen C, Lebensm Z. Electron microscopic studies on protein films from wheat and other sources at the air/water interface. Unters Forsch. 1990;190:217–22.CrossRefGoogle Scholar
  9. 9.
    Woerdeman DL, Veraverbeke WS, Parnas RC, Johnson D, Delcour JA, Verpoest I, Plummer CJG. Designing new materials from wheat protein. Biomacromolecules. 2004;5:1262–9.CrossRefGoogle Scholar
  10. 10.
    Ta TC, Sykes MT, Mcdermott MT. Real-time observation of plasma protein film formation on well-defined surfaces with scanning force microscopy. Langmuir. 1998;14:2435–43.CrossRefGoogle Scholar
  11. 11.
    Netrition.com. Wheat protein isolate, www23.netrition.com/lifesource_wheat_protein_page.html, 15 Dec 2010, p. 1–3.
  12. 12.
    Krochta JM, Johnston CD. Edible and biodegradable polymer films: challenges and opportunities. Food Technol. 1997;51:61–74.Google Scholar
  13. 13.
    Gontard N, Ring S. Edible wheat gluten film: influence of water content on glass transition temperature. J Agric Food Chem. 1996;44:3474–8.CrossRefGoogle Scholar
  14. 14.
    Morel MH. Protein insolubilization and thiol oxidation in sulfite-treated wheat gluten films during aging at various temperatures and relative humidities. J Agric Food Chem. 2000;48:186–92.CrossRefGoogle Scholar
  15. 15.
    Micard V. Thermal properties of raw and processed wheat gluten in relation with protein aggregation. Polymer. 2000;42:477–85.CrossRefGoogle Scholar
  16. 16.
    Gällstedt M. Films and composites based on chitosan, wheat gluten or whey proteins—their packaging related mechanical, barrier properties, in fibre, polymer technology. Stockholm: Technical Royal School; 2004.Google Scholar
  17. 17.
    Roy S. Physical and molecular properties of wheat gluten films cast from heated film-forming solutions. J Food Sci. 1999;64:57–60.CrossRefGoogle Scholar
  18. 18.
    Lindsay MP, Skerritt JH. Trends in food science & technology. Trends Food Sci Technol. 1999;10:247–53.CrossRefGoogle Scholar
  19. 19.
    Mojumdar SC, Raki L. Preparation, thermal, spectral and microscopic studies of calcium silicate hydrate-poly(acrylic acid) nanocomposite materials. J Therm Anal Calorim. 2006;85:99–105.CrossRefGoogle Scholar
  20. 20.
    Sawant SY, Verenkar VMS, Mojumdar SC. Preparation, thermal, XRD, chemical and FT-IR spectral analysis of NiMn2O4 nanoparticles and respective precursor. J Therm Anal Calorim. 2007;90:669–72.CrossRefGoogle Scholar
  21. 21.
    Porob RA, Khan SZ, Mojumdar SC, Verenkar VMS. Synthesis, TG, SDC and infrared spectral study of NiMn2(C4H4O4)3·6N2H4—a precursor for NiMn2O4 nanoparticles. J Therm Anal Calorim. 2006;86:605–8.CrossRefGoogle Scholar
  22. 22.
    Mojumdar SC, Varshney KG, Agrawal A. Hybrid fibrous ion exchange materials: past, present and future. Res J Chem Environ. 2006;10:89–103.Google Scholar
  23. 23.
    Doval M, Palou M, Mojumdar SC. Hydration behaviour of C2S and C2AS nanomaterials, synthesized by sol-gel method. J Therm Anal Calorim. 2006;86:595–9.CrossRefGoogle Scholar
  24. 24.
    Tiwari NR, Rathore A, Prabhune A, Kulkarni SK. Gold nanoparticles for colorimetric detection of hydrolysis of antibiotics by penicillin G acylase. Adv Biosci Biotechnol. 2010;1:322–9.CrossRefGoogle Scholar
  25. 25.
    Varshney G, Agrawal A, Mojumdar SC. Pyridine based cerium(IV) phosphate hybrid fibrous ion exchanger: synthesis, characterization and thermal behaviour. J Therm Anal Calorim. 2007;90:731–4.CrossRefGoogle Scholar
  26. 26.
    Mojumdar SC, Melnik M, Jona E. Thermal and spectral properties of Mg(II) and Cu(II) complexes with heterocyclic N-donor ligands. J Anal Appl Pyrolysis. 2000;53:149–60.CrossRefGoogle Scholar
  27. 27.
    Borah B, Wood JL. Complex hydrogen bonded cations. The benzimidazole benzimidazolium cation. Can J Chem. 1976;50:2470–81.CrossRefGoogle Scholar
  28. 28.
    Mojumdar SC, Sain M, Prasad RC, Sun L, Venart JES. Selected thermoanalytical methods and their applications from medicine to construction. J Therm Anal Calorim. 2007;60:653–62.CrossRefGoogle Scholar
  29. 29.
    Meenakshisundarm SP, Parthiban S, Madhurambal G, Mojumdar SC. Effect of chelating agent (1, 10-phenanthroline) on potassium hydrogen phthalate crystals. J Therm Anal Calorim. 2008;94:21–5.CrossRefGoogle Scholar
  30. 30.
    Rejitha KS, Mathew S. Investigations on the thermal behavior of hexaamminenickel(II) sulphate using TG-MS and TR-XRD. Glob J Anal Chem. 2010;1(1):100–8.Google Scholar
  31. 31.
    Ondrusova D, Jona E, Simon P. Thermal properties of N-ethyl-N-phenyldithiocarbamates and their influence on the kinetics of cure. J Therm Anal Calorim. 2002;67:147–52.CrossRefGoogle Scholar
  32. 32.
    Madhurambal G, Ramasamy P, Anbusrinivasan P, Vasudevan G, Kavitha S, Mojumdar SC. Growth and characterization studies of 2-bromo-4′-chloro-acetophenone (BCAP) crystals. J Therm Anal Calorim. 2008;94:59–62.CrossRefGoogle Scholar
  33. 33.
    Ukraintseva EA, Logvinenko VA, Soldatov DV, Chingina TA. Thermal dissociation processes for clathrates [CuPy4(NO3)2]·2G (G=tetrahydrofurane, chloroform). J Therm Anal Calorim. 2004;75:337–45.CrossRefGoogle Scholar
  34. 34.
    Raileanu M, Todan L, Crisan M, Braileanu A, Rusu A, Bradu C, Carpov A, Zaharescu M. Sol–gel materials with pesticide delivery properties. J Environ Prot. 2010;1:302–13.CrossRefGoogle Scholar
  35. 35.
    Varshney KG, Agrawal A, Mojumdar SC. Pectin based cerium(IV) and thorium(IV) phosphates as novel hybrid fibrous ion exchangers synthesis, characterization and thermal behaviour. J Therm Anal Calorim. 2005;81:183–9.CrossRefGoogle Scholar
  36. 36.
    Mojumdar SC, Šimon P, Krutošíková A. [1]Benzofuro[3, 2-c]pyridine: synthesis and coordination reactions. J Therm Anal Calorim. 2009;96:103–9.CrossRefGoogle Scholar
  37. 37.
    Jona E, Rudinska E, Sapietova M, Pajtasova M, Ondrusova D, Jorik V, Mojumdar SC. Interaction of pyridine derivatives into the interlayer spaces of Cu(II)-montmorillonites. Res J Chem Environ. 2005;9:41–3.Google Scholar
  38. 38.
    Mojumdar SC, Miklovic J, Krutosikova A, Valigura D, Stewart JM. Furopyridines and furopyridine-Ni(II) complexes–Synthesis, thermal and spectral characterization. J Therm Anal Calorim. 2005;81:211–5.CrossRefGoogle Scholar
  39. 39.
    Vasudevan G, AnbuSrinivasan P, Madhurambal G, Mojumdar SC. Thermal analysis, effect of dopants, spectral characterisation and growth aspects of KAP crystals. J Therm Anal Calorim. 2009;96:99–102.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • S. C. Mojumdar
    • 1
  • C. Moresoli
    • 1
  • L. C. Simon
    • 1
  • R. L. Legge
    • 1
  1. 1.Department of Chemical EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations