Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 107, Issue 2, pp 431–438 | Cite as

Thermal behaviour of ground and unground acid leached vermiculite

  • L. A. Perez-MaquedaEmail author
  • C. Maqueda
  • J. L. Perez-Rodriguez
  • J. Subrt
  • Z. Cerny
  • V. Balek
Article

Abstract

Acid leaching of vermiculite is an interesting procedure to prepare high surface area porous silica. Thermal behaviour of unground and ground vermiculite leached with HCl solutions has been studied by TG, DTA, ETA and high temperature XRD. Important differences have been observed in the thermal behaviour of unground and ground vermiculite after the acid treatments. Thus, for the acid-treated unground vermiculite, dehydrated vermiculite, enstatite and cristobalite were formed during the heating, while for the acid-treated ground vermiculite only iron oxides and cristobalite phases were observed. Structural modifications due to acid treatment were responsible for changes in the transport properties determined by ETA for the vermiculite samples.

Keywords

Vermiculite Grinding Acid leaching DTA TG EGA Emanation thermal analysis 

Notes

Acknowledgements

The paper was prepared in the frame of the bilateral cooperation between CSIC, Spain, and Academy of Sciences of the Czech Republic. The authors are grateful to the financial support of Junta de Andalucía (TEP-03002), the Spanish Interministerial Commission for Science and Technology (MAT 2008-06619/MAT) and the Academy of Sciences of the Czech Republic (LC 523).

References

  1. 1.
    Harben PW. Industrial mineral handy book. London: Industrial Mineral Division, Metal Bulletin PLC; 1995.Google Scholar
  2. 2.
    Dellisanti F, Valdre G. Study of structural properties of ion treated and mechanically deformed commercial bentonite. Appl Clay Sci. 2005;28(1–4):233–44.CrossRefGoogle Scholar
  3. 3.
    Franco F, Cecila JA, Perez-Maqueda LA, Perez-Rodriguez JL, Gomes CSF. Particle-size reduction of dickite by ultrasound treatments: effect on the structure, shape and particle-size distribution. Appl Clay Sci. 2007;35(1–2):119–27.CrossRefGoogle Scholar
  4. 4.
    Kameda J, Saruwatari K, Tanaka H. H2 generation during dry grinding of kaolinite. J Colloid Interface Sci. 2004;275(1):225–8.CrossRefGoogle Scholar
  5. 5.
    Mendelovici E. Selective mechanochemical reactions on dry grinding structurally different silicates. J Mater Sci Lett. 2001;20(1):81–3.CrossRefGoogle Scholar
  6. 6.
    Stepkowska ET, Perez-Rodriguez JL, de Haro MCJ, Sanchez-Soto PJ, Maqueda C. Effect of grinding and water vapour on the particle size of kaolinite and pyrophyllite. Clay Miner. 2001;36(1):105–14.CrossRefGoogle Scholar
  7. 7.
    Subrt J, Perez-Maqueda LA, Criado JM, Real C, Bohacek J, Vecernikova E. Preparation of nanosized hematite particles by mechanical activation of goethite samples. J Am Ceram Soc. 2000;83(2):294–8.CrossRefGoogle Scholar
  8. 8.
    Uhlik P, Sucha V, Eberl DD, Puskelova L, Caplovicova M. Evolution of pyrophyllite particle sizes during dry grinding. Clay Miner. 2000;35(2):423–32.CrossRefGoogle Scholar
  9. 9.
    Yariv S, Lapides I. The effect of mechanochemical treatments on clay minerals and the mechanochemical adsorption of organic materials onto clay minerals. J Mater Synth Process. 2000;8(3–4):223–33.CrossRefGoogle Scholar
  10. 10.
    Wiewiora A, Perez-Rodriguez JL, Perez-Maqueda LA, Drapala J. Particle size distribution in sonicated high- and low-charge vermiculites. Appl Clay Sci. 2003;24(1–2):51–8.CrossRefGoogle Scholar
  11. 11.
    Perez-Maqueda LA, De Haro MCJ, Poyato J, Perez-Rodriguez JL. Comparative study of ground and sonicated vermiculite. J Mater Sci. 2004;39(16–17):5347–51.CrossRefGoogle Scholar
  12. 12.
    Maqueda C, Perez-Rodriguez JL, Subrt J, Murafa N. Study of ground and unground leached vermiculite. Appl Clay Sci. 2009;44(1–2):178–84.CrossRefGoogle Scholar
  13. 13.
    Okada K, Arimitsu N, Karneshima Y, Nakajima A, MacKenzie KJD. Solid acidity of 2:1 type clay minerals activated by selective leaching. Appl Clay Sci. 2006;31(3–4):185–93.CrossRefGoogle Scholar
  14. 14.
    Suquet H, Franck R, Lambert J, Elsass F, Marcilly C, Chevalier S. Catalytic properties of two pre-cracking matrices: a leached vermiculite and a Al-pillared saponite. Appl Clay Sci. 1994;8(5):349–64.CrossRefGoogle Scholar
  15. 15.
    Temuujin J, Okada K, MacKenzie KJD. Preparation of porous silica from vermiculite by selective leaching. Appl Clay Sci. 2003;22(4):187–95.CrossRefGoogle Scholar
  16. 16.
    Maqueda C, Romero AS, Morillo E, Perez-Rodriguez JL, Lerf A, Wagner FE. The behavior of Fe in ground and acid-treated vermiculite from Santa Olalla, Spain. Clays Clay Miner. 2008;56(3):380–8.CrossRefGoogle Scholar
  17. 17.
    Maqueda C, Romero AS, Morillo E, Perez-Rodriguez JL. Effect of grinding on the preparation of porous materials by acid-leached vermiculite. J Phys Chem Solids. 2007;68(5–6):1220–4.CrossRefGoogle Scholar
  18. 18.
    Balek V, Perez-Maqueda LA, Poyato J, Cerny Z, Ramirez-Valle V, Buntseva IM, et al. Effect of grinding on thermal reactivity of ceramic clay minerals. J Therm Anal Calorim. 2007;88(1):87–91.CrossRefGoogle Scholar
  19. 19.
    Franco F, Perez-Maqueda LA, Perez-Rodriguez JL. The influence of ultrasound on the thermal behaviour of a well ordered kaolinite. Thermochim Acta. 2003;404(1–2):71–9.CrossRefGoogle Scholar
  20. 20.
    Horvath E, Frost RL, Mako E, Kristof J, Cseh T. Thermal treatment of mechanochemically activated kaolinite. Thermochim Acta. 2003;404(1–2):227–34.CrossRefGoogle Scholar
  21. 21.
    Perez-Maqueda LA, Perez-Rodriguez JL, Scheiffele GW, Justo A, Sanchez-Soto PJ. Thermal analysis of ground kaolinite an pyrophyllite. J Therm Anal. 1993;39(8–9):1055–67.Google Scholar
  22. 22.
    Perez-Rodriguez JL, Duran A, Sanchez-Jimenez PE, Franquelo ML, Perejon A, Pascual-Cosp J, et al. Study of the dehydroxylation–rehydroxylation of pyrophyllite. J Am Ceram Soc. 2010;93(8):2392–8.CrossRefGoogle Scholar
  23. 23.
    Sanchez-Soto PJ, Perez-Rodriguez JL. Thermal analysis of pyrophyllite transformations. Thermochim Acta. 1989;138(2):267–76.CrossRefGoogle Scholar
  24. 24.
    Lapides I, Yariv S. The effect of mechanochemical treatments of sepiolite with CsCl on the calcination products. J Therm Anal Calorim. 2010;99(3):855–60.CrossRefGoogle Scholar
  25. 25.
    Clausen P, Signorelli M, Schreiber A, Hughes E, Plummer CJG, Fessas D, et al. Equilibrium desorption isotherms of water, ethanol, ethyl acetate, and toluene on a sodium smectite clay. J Therm Anal Calorim. 2009;98(3):833–41.CrossRefGoogle Scholar
  26. 26.
    Balek V, Perez-Rodriguez JL, Perez-Maqueda LA, Subrt J, Poyato J. Thermal behaviour of ground vermiculite. J Therm Anal Calorim. 2007;88(3):819–23.CrossRefGoogle Scholar
  27. 27.
    Perez-Maqueda LA, Balek V, Poyato J, Perez-Rodriquez JL, Subrt J, Bountsewa IM, et al. Study of natural and ion exchanged vermiculite by emanation thermal analysis, TG, DTA and XRD. J Therm Anal Calorim. 2003;71(3):715–26.CrossRefGoogle Scholar
  28. 28.
    JCPDS PDF-2 database ICfDD, Newtown Square, PA, USA release 54, 2004.Google Scholar
  29. 29.
    ICSD database FIZ Karlsruhe G, release 2010/2, 2010.Google Scholar
  30. 30.
    Music S, Krehula S, Popovic S. Effect of HCl additions on forced hydrolysis of FeCl3 solutions. Mater Lett. 2004;58(21):2640–5.CrossRefGoogle Scholar
  31. 31.
    Ohyabu M, Ujihira Y. A study of the precipitates formed by hydrolysis of Fe(III) nitrate solution containing Na+ and SO42-. J Inorg Nucl Chem. 1981;43(8):1948–9.CrossRefGoogle Scholar
  32. 32.
    Shao HF, Qian XF, Yin J, Zhu ZK. Controlled morphology synthesis of beta-FeOOH and the phase transition to Fe2O3. J Solid State Chem. 2005;178(10):3130–6.CrossRefGoogle Scholar
  33. 33.
    Zhang LY, Feng J, Xue DS. An investigation of thermal decomposition of beta-FeOOH nanowire arrays assembled in AAO templates. Mater Lett. 2007;61(6):1363–7.CrossRefGoogle Scholar
  34. 34.
    Perez-Rodriguez JL, Maqueda C, Murafa N, Subrt J, Balek V, Pulisova P et al. Study of ground and unground leached vermiculite. II Thermal behaviour of ground acid-treated vermiculite. Appl Clay Sci. 2011;51(3):274–82.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • L. A. Perez-Maqueda
    • 1
    Email author
  • C. Maqueda
    • 2
  • J. L. Perez-Rodriguez
    • 1
  • J. Subrt
    • 3
  • Z. Cerny
    • 3
  • V. Balek
    • 3
  1. 1.Instituto de Ciencia de Materiales de Sevilla (CSIC)SevillaSpain
  2. 2.Instituto de Recursos Naturales y Agrobiología (CSIC)SevillaSpain
  3. 3.Institute of Inorganic Chemistry AV CRHusinec-RezCzech Republic

Personalised recommendations