Journal of Thermal Analysis and Calorimetry

, Volume 105, Issue 2, pp 657–662 | Cite as

Optical energy storage properties of Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials

  • Hermi F. Brito
  • Jukka Hassinen
  • Jorma Hölsä
  • Högne Jungner
  • Taneli Laamanen
  • Mika Lastusaari
  • Marja Malkamäki
  • Janne Niittykoski
  • Pavel Novák
  • Lucas C. V. Rodrigues
Article

Abstract

The details of the mechanism of persistent luminescence were probed by investigating the trap level structure of Sr2MgSi2O7:Eu2+,R3+ materials (R: Y, La-Lu, excluding Pm and Eu) with thermoluminescence (TL) measurements and Density Functional Theory (DFT) calculations. The TL results indicated that the shallowest traps for each Sr2MgSi2O7:Eu2+,R3+ material above room temperature were always ca. 0.7 eV corresponding to a strong TL maximum at ca. 90 °C. This main trap energy was only slightly modified by the different co-dopants, which, in contrast, had a significant effect on the depths of the deeper traps. The combined results of the trap level energies obtained from the experimental data and DFT calculations suggest that the main trap responsible for the persistent luminescence of the Sr2MgSi2O7:Eu2+,R3+ materials is created by charge compensation lattice defects, identified tentatively as oxygen vacancies, induced by the R3+ co-dopants.

Keywords

Thermoluminescence Persistent luminescence DFT Disilicate Trapping 

Notes

Acknowledgements

Financial support is acknowledged from the Turku University Foundation, Jenny and Antti Wihuri Foundation (Finland) and the Academy of Finland (contracts #117057/2000, #123976/2006, and #134459/2009). The DFT calculations were carried out using the supercomputing resources of the CSC IT Center for Science (Espoo, Finland). The study was supported by the research mobility agreements (112816/2006/JH and 116142/2006/JH, 123976/2007/TL) between the Academy of Finland and the Academy of Sciences of the Czech Republic, as well as the Czech research project AVOZ10100521.

References

  1. 1.
    Aitasalo T, Hölsä J, Jungner H, Lastusaari M, Niittykoski J. Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+. J Phys Chem B. 2006;110:4589–98.CrossRefGoogle Scholar
  2. 2.
    Yamamoto H, Matsuzawa T. Mechanism of long phosphorescence of SrAl2O4:Eu2+,Dy3+ and CaAl2O4:Eu2+,Nd3+. J Lumin. 1997;72–74:287–9.CrossRefGoogle Scholar
  3. 3.
    Lin Y, Tang Z, Zhang Z, Nan CW. Anomalous luminescence in Sr4Al14O25:Eu, Dy phosphors. Appl Phys Lett. 2002;81:996–8.CrossRefGoogle Scholar
  4. 4.
    Lin Y, Tang Z, Zhang Z, Wang X, Zhang J. Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor. J Mater Sci Lett. 2001;20:1505–6.CrossRefGoogle Scholar
  5. 5.
    de Chermont QL, Chanéac C, Seguin J, Pellé F, Maîtrejean S, Jolivet J-P, Gourier D, Bessodes M, Scherman D. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc Natl Acad Sci USA. 2007;104:9266–77.CrossRefGoogle Scholar
  6. 6.
    Hölsä J. Persistent luminescence beats the afterglow: 400 years of persistent luminescence. ECS Interface. 2009;18(4):42–5.Google Scholar
  7. 7.
    Matsuzawa T, Aoki Y, Takeuchi N, Murayama Y. A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+. J Electrochem Soc. 1996;143:2670–3.CrossRefGoogle Scholar
  8. 8.
    Dorenbos P. Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds. J Electrochem Soc. 2005;152:H107–10.CrossRefGoogle Scholar
  9. 9.
    Aitasalo T, Dereń P, Hölsä J, Jungner H, Krupa J-C, Lastusaari M, Legendziewicz J, Niittykoski J, Stręk W. Persistent luminescence phenomena in materials doped with rare earth ions. J Solid State Chem. 2003;171:114–22.CrossRefGoogle Scholar
  10. 10.
    Hölsä J, Kotlov A, Laamanen T, Lastusaari M, Malkamäki M, Welter E. Persistent luminescence of Sr3SiO5:Eu2+,R3+ (R: Y, La-Nd, Sm, Gd-Lu). In: Proceedings of excited states of transition elements 2010 (ESTE-2010), Piechowice, Poland, September 4–9, 2010. p. 49.Google Scholar
  11. 11.
    Dorenbos P. Systematic behaviour in trivalent lanthanide charge transfer energies. J Phys. 2003;15:8417–34.Google Scholar
  12. 12.
    Dorenbos P. Relation between Eu2+ and Ce3+ f ↔ d-transition energies in inorganic compounds. J Phys. 2003;15:4797–807.Google Scholar
  13. 13.
    Hölsä J, Niittykoski J, Kirm M, Laamanen T, Lastusaari M, Novák P, Raud J. Synchrotron radiation study of the M2MgSi2O7:Eu2+ persistent luminescence materials. ECS Trans. 2008;6:1–10.CrossRefGoogle Scholar
  14. 14.
    Dorenbos P. Mechanism of persistent luminescence in Sr2MgSi2O7:Eu2+,Dy3+. Phys Stat Sol B. 2005;242:R7–9.CrossRefGoogle Scholar
  15. 15.
    Chung KS. TL glow curve analyzer v. 1.0.3. Korea Atomic Energy Research Institute and Gyeongsang National University, Korea; 2008.Google Scholar
  16. 16.
    Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J. Schwarz K, editors. WIEN2k, an augmented plane wave + local orbitals program for calculating crystal properties, Vienna University of Technology, Austria, 2001.Google Scholar
  17. 17.
    Kimata M. The structural properties of synthetic Sr-åkermanite, Sr2MgSi2O7. Z Kristallogr. 1983;163:295–304.CrossRefGoogle Scholar
  18. 18.
    Fung KKL. Investigation of dosimetric characteristics of the high sensitivity LiF-Mg, Cu, P thermoluminescent dosemeter and its applications in diagnostic radiology–a review. Radiography. 2004;10:145–50.CrossRefGoogle Scholar
  19. 19.
    Mathur VK, Lewandowski AC, Guardala NA, Price JL. High dose measurements using thermoluminescence of CaSO4:Dy. Radiat Meas. 1999;30:735–8.CrossRefGoogle Scholar
  20. 20.
    Bos AJJ, Dorenbos P, Bessière A, Viana B. Lanthanide energy levels in YPO4. Radiat Meas. 2008;43:222–6.CrossRefGoogle Scholar
  21. 21.
    Dorenbos P, Bos AJJ, Poolton, NRJ. Electron transfer processes in double lanthanide activated YPO4. Opt Mater. 2010 (in press).Google Scholar
  22. 22.
    Aitasalo T, Hassinen J, Hölsä J, Laamanen T, Lastusaari M, Malkamäki M, Niittykoski J, Novák P. Synchrotron radiation investigations of the Sr2MgSi2O7:Eu2+, R3+ persistent luminescence materials. J Rare Earths. 2009;4:529–38.CrossRefGoogle Scholar
  23. 23.
    Carlson S, Hölsä J, Laamanen T, Lastusaari M, Malkamäki M, Niittykoski J, Valtonen R. X-ray absorption study of rare earth ions in Sr2MgSi2O7:Eu2+, R3+ persistent luminescence materials. Opt Mater. 2009;31:1877–9.CrossRefGoogle Scholar
  24. 24.
    Clabau F, Rocquefelte X, Le Mercier T, Deniard P, Jobic S, Whangbo M-H. Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect conglomeration. Chem Mater. 2006;18:3212–20.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • Hermi F. Brito
    • 1
  • Jukka Hassinen
    • 2
  • Jorma Hölsä
    • 1
    • 2
    • 3
  • Högne Jungner
    • 4
  • Taneli Laamanen
    • 2
    • 5
  • Mika Lastusaari
    • 2
    • 3
  • Marja Malkamäki
    • 2
    • 5
  • Janne Niittykoski
    • 2
    • 7
  • Pavel Novák
    • 6
  • Lucas C. V. Rodrigues
    • 1
    • 2
  1. 1.Departamento de Química FundamentalUniversidade de São Paulo, Instituto de QuímicaSão PauloBrazil
  2. 2.Department of ChemistryUniversity of TurkuTurkuFinland
  3. 3.Turku University Centre for Materials and Surfaces (MatSurf)TurkuFinland
  4. 4.Dating LaboratoryUniversity of HelsinkiHelsinkiFinland
  5. 5.Graduate School of Materials Research (GSMR)TurkuFinland
  6. 6.Institute of PhysicsAcademy of Sciences of the Czech RepublicPrague 6Czech Republic
  7. 7.OMG Kokkola Chemicals OyKokkolaFinland

Personalised recommendations