Journal of Thermal Analysis and Calorimetry

, Volume 104, Issue 1, pp 187–192 | Cite as

Impact of sunflower and mustard leave extracts on the growth and dark respiration of mustard seedlings

  • Andrzej Skoczowski
  • Magdalena TroćEmail author
  • Anna Baran
  • Małgorzata Baranska


The subject of the study was investigation of impact of extracts from sunflower and mustard leaves on growth of mustard seedlings. Seeds of mustard were germinated on water and then grew on aqueous extracts from sunflower or mustard leaves. The specific thermal power during seedlings growth was measured by isothermal calorimetry. Changes in the chemical composition stimulated by extracts were measured by FT-Raman spectroscopy and analyzed with the support of the cluster analysis. The heat production rate during growth of seedlings was related to the type of extracts. Crude sunflower and mustard extracts strongly inhibited the growth of seedlings when compared to non-treated control. FT-Raman spectroscopy confirms that allelopathic compounds have the greatest influence on the metabolism of fatty acids of mustard cotyledons. The obtained results indicate that sunflower and mustard extracts have varied impact on growth and heat production rate of mustard seedlings.


Allelopathy Isothermal calorimetry Mustard Non-destructive Raman spectroscopy Sunflower 


  1. 1.
    Rice EL. Allelopathy. New York: Academic Press; 1984.Google Scholar
  2. 2.
    Vyvyan JR. Allelochemicals as leads for new herbicides and agrochemicals. Tetrahedron. 2002;58:1631–46.CrossRefGoogle Scholar
  3. 3.
    Macias FA, Molinillo JMG, Torres A, Varela RM, Castellano D. Bioactive flavonoids from Helianthus annus cultivars. Phytochemistry. 1997;45:683–7.CrossRefGoogle Scholar
  4. 4.
    Macias FA, Torres A, Galindo JLG, Varela RM, Alvarez JA, Molinillo JMG. Bioactive terpenoids from sunflower leaves cv. Peredovick. Phytochemistry. 2002;61:687–92.CrossRefGoogle Scholar
  5. 5.
    Macias FA, Varela RM, Torres A, Oliva RM, Molinillo JMG. Bioactive norsesquiterpenes from Helianthus annus with potential allelopathic activity. Phytochemistry. 1997;48:631–6.CrossRefGoogle Scholar
  6. 6.
    Macias FA, Torres A, Molinillo JMG, Varela RM, Castellano D. Potential allelopathic sesquiterpene lactones from sunflower leaves. Phytochemistry. 1996;43:1205–15.CrossRefGoogle Scholar
  7. 7.
    de Luque AP, Galindo JCG, Macias FA, Jorrin J. Sunflower sesquiterpene lactones induce Orobanche cumana seed germination. Phytochemistry. 2000;53:45–50.CrossRefGoogle Scholar
  8. 8.
    Macias FA, Lopez A, Varela RM, Torres A, Molinillo JMG. Bioactive apocarotenoids annuionones F and G: structural revision of annuionones A, B and E. Phytochemistry. 2004;65:3057–63.CrossRefGoogle Scholar
  9. 9.
    Anjum T, Bajwa R. A bioactive annuionone from sunflower leaves. Phytochemistry. 2005;66:1919–21.CrossRefGoogle Scholar
  10. 10.
    Macias FA, Varela RM, Torres A, Molinillo JMG, Heliespirone A. The first number of a novel family of bioactive sesquiterpenes. Tetrahedron Lett. 1998;39:427–30.CrossRefGoogle Scholar
  11. 11.
    Macias FA, Varela RM, Torres A, Molinillo JMG, Heliannuol E. A novel bioactive sesquiterpene of the heliannane family. Tetrahedron Lett. 1999;40:4725–8.CrossRefGoogle Scholar
  12. 12.
    Ghosh S, Tuhina K, Bhowmik DR, Venkateswaran RV. Synthesis of heliannuols A, K, allelochemicals from cultivar sunflowers and the marine metabolite helianane, unusual sesquiterpenes containing a benzoxocane ring system. Tetrahedron Lett. 2007;63:644–51.Google Scholar
  13. 13.
    Roy A, Biswas B, Sen PK, Venkateswaran RV. Total synthesis of heliannuol B, an allelochemical from Helianthus annus. Tetrahedron Lett. 2007;48:6933–6.CrossRefGoogle Scholar
  14. 14.
    Kupidłowska E, Gniazdowska A, Stępień J, Corbineau F, Ginel D, Skoczowski A, Janeczko A, Bogatek R. Impact of sunflower (Helianthus annus L.) extracts upon reserve mobilization and energy metabolism in germinating mustard (Sinapis alba L.) seeds. J Chem Ecol. 2006;32:2569–83.CrossRefGoogle Scholar
  15. 15.
    Troć M, Skoczowski A, Baranska M. The influence of sunflower and mustard leaf extracts on the germination of mustard seeds. J Therm Anal Calorim. 2009;95:727–30.CrossRefGoogle Scholar
  16. 16.
    Schabes FI, Sigstad EE. A calorimetric study of the allelopathic effect of cnicin isolated from Centaurea diffusa Lam. on the germination of soybean (Glicine max) and radish (Raphanus sativus). Thermochim Acta. 2007;458:84–7.CrossRefGoogle Scholar
  17. 17.
    Schrader B, Schulz H, Andreev GN, Klump HH, Sawatzki J. Non-destructive NIR-FT-Raman spectroscopy of plant and animal tissues, of food and works of art. Talanta. 2000;53:35–45.CrossRefGoogle Scholar
  18. 18.
    Baranska M, Schulz H, Baranski R, Nothnagel T, Christensen L. In situ simultaneous analysis of polyacetylenes, carotenoids and polysaccharides in carrot roots. J Agric Food Chem. 2005;53:6565–71.CrossRefGoogle Scholar
  19. 19.
    Baranska M, Baranski R, Schulz H, Nothnagel T. Tissue–specific accumulation of carotenoids in carrot roots. Planta. 2006;224:1028–37.CrossRefGoogle Scholar
  20. 20.
    Baranska M, Schulz H, Joubert E, Manley M. In situ flavonoid analysis by FT-Raman spectroscopy: identification, distribution and quantification of aspalathin in green rooibos (Aspalathus linearis). Anal Chem. 2006;78:7716–21.CrossRefGoogle Scholar
  21. 21.
    Hansen LD, Taylor DK, Smith BN, Criddle RS. The relation between plant growth and respiration: applications to ecology and crop cultivar selection. Russ J Plant Physiol. 1996;43:691–7.Google Scholar
  22. 22.
    Bailey GF, Horvat RJ. Raman spectroscopic analysis of the cis/trans isomer composition of edible vegetable oils. J Am Oil Chem Soc. 1972;49:494–8.CrossRefGoogle Scholar
  23. 23.
    Sadeghi-Jorabchi H, Wilson RH, Belton PS, Edward-Webb JD, Coxon DT. Quantitative analysis of oils and fats by Fourier-transform Raman spectroscopy. Spectrochim Acta A. 1991;47:1449–58.CrossRefGoogle Scholar
  24. 24.
    Sadeghi-Jorabchi H, Hendra PJ, Wilson RH, Belton PS. Determination of the total unsaturation in oils and margarines by Fourier transform Raman spectroscopy. J Am Oil Chem Soc. 1990;67:483–6.CrossRefGoogle Scholar
  25. 25.
    Cornard JP, Vrielynck L, Merlin JC, Wallet JC. Structural and vibrational study of 3-hydroxyflavone and 3-methoxyflavone. Spectrochim Acta A. 1995;51:913–23.CrossRefGoogle Scholar
  26. 26.
    Cornard JP, Merlin JC, Boudet AC, Vrielynck L. Structural study of quercetin by vibrational and electronic spectroscopies combined with semiempirical calculations. Biospectroscopy. 1997;3:183–93.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • Andrzej Skoczowski
    • 1
    • 3
  • Magdalena Troć
    • 1
    Email author
  • Anna Baran
    • 2
  • Małgorzata Baranska
    • 2
  1. 1.The Franciszek Górski Institute of Plant PhysiologyPolish Academy of SciencesKrakowPoland
  2. 2.Faculty of ChemistryJagiellonian UniversityKrakowPoland
  3. 3.Institute of BiologyPedagogical UniversityKrakowPoland

Personalised recommendations