Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 103, Issue 3, pp 911–916 | Cite as

A simplified kinetic model for isothermal catalytic ignition

Propane/air mixture on platinum wire
  • Dumitru OanceaEmail author
  • Valentin Munteanu
  • Domnina Razus
  • Maria Mitu
Article

Abstract

The ignition of catalytic combustion of the stoichiometric propane/air mixture on an isothermally heated platinum wire in different experimental conditions of total pressure and wire temperature is studied and discussed on the basis of a simplified kinetic model. The platinum wire is heated electrically with a specially designed power supply, which ensures a quasi-rectangular profile of its temperature. The ignition process is monitored by measuring the input power required to maintain a constant temperature of the wire during an exothermic catalytic reaction. The difference between the input powers recorded in air and in a fuel/air mixture, for the same wire temperature and gas total pressure, allows the elimination of the heat transferred to surroundings and conversion of the results into the catalytic reaction rate r R versus time curves of S-shaped form, illustrating the transition from kinetic to diffusion regime. The curve can be used to evaluate the ignition delay, as reported previously and also to fit different models to the data. The quasi-exponential increase of the isothermal reaction rate during the early stages of the process can be rationalized on the basis of a simplified kinetic model implying the multiplication of the adsorbed active intermediates. The adopted hypotheses allow the derivation of an analytical solution for the catalytic reaction rate before and during the ignition process, without diffusion limitations.

Keywords

Isothermal catalytic ignition Propane/air mixture Platinum wire Multiplication of surface active intermediates 

Notes

Acknowledgements

The authors acknowledge the financial support of CNCSIS through the Contract No. 38/2007 for the Project ID_1008.

References

  1. 1.
    Pfefferle LD, Pfefferle WC. Catalysis in combustion. Catal Rev Sci Eng. 1987;29:219–67.CrossRefGoogle Scholar
  2. 2.
    Powell F. Ignition of gases and vapors. Ind Eng Chem. 1969;61:29–37.CrossRefGoogle Scholar
  3. 3.
    Laurendeau NM. Thermal ignition of methane-air mixtures by hot surfaces: a critical examination. Combust Flame. 1982;46:29–49.CrossRefGoogle Scholar
  4. 4.
    Arpentinier Ph, Cavani F, Trifiro F. The contribution of homogeneous reactions in catalytic oxidation processes: safety and selectivity aspects. Catal Today. 2005;99:15–22.CrossRefGoogle Scholar
  5. 5.
    Saint-Just J, der Kinderen J. Catalytic combustion: from reaction mechanism to commercial applications. Catal Today. 1996;29:387–95.CrossRefGoogle Scholar
  6. 6.
    Forzatti P, Groppi G. Catalytic combustion for the production of energy. Catal Today. 1999;54:165–80.CrossRefGoogle Scholar
  7. 7.
    Carroni R, Schmidt V, Griffin T. Catalytic combustion for power generation. Catal Today. 2002;75:287–95.CrossRefGoogle Scholar
  8. 8.
    Tahir SF, Koh CA. Catalytic destruction of volatile organic compound emissions by platinum based catalyst. Chemosphere. 1999;38:2109–16.CrossRefGoogle Scholar
  9. 9.
    O’Malley A, Hodnett BK. The influence of volatile organic compound structure on conditions required for total oxidation. Catal Today. 1999;54:31–8.CrossRefGoogle Scholar
  10. 10.
    Garetto TF, Apesteguía CR. Oxidative catalytic removal of hydrocarbons over Pt/Al2O3 catalysts. Catal Today. 2000;62:189–99.CrossRefGoogle Scholar
  11. 11.
    Shijie L, Weiyong Y, Dingye F, Hideo K. Kinetics of catalytic combustion in air over Pt/Al2O3/Al catalyst. React Kinet Catal Lett. 2005;85:205–13.CrossRefGoogle Scholar
  12. 12.
    Twigg MV. Roles of catalytic oxidation control of vehicle exhaust emissions. Catal Today. 2006;117:407–18.CrossRefGoogle Scholar
  13. 13.
    Griffin TA, Pfefferle LD. Gas phase and catalytic ignition of methane and ethane in air over platinum. AIChE J. 1990;36:861–70.CrossRefGoogle Scholar
  14. 14.
    Veser G, Schmidt LD. Ignition and extinction in the catalytic oxidation of hydrocarbons over platinum. AIChE J. 1996;42:1077–87.CrossRefGoogle Scholar
  15. 15.
    Veser G, Ziauddin M, Schmidt LD. Ignition in alkane oxidation on noble-metal catalysts. Catal Today. 1999;47:219–28.CrossRefGoogle Scholar
  16. 16.
    Alkidas A, Durbetaki P. Ignition of a gaseous mixture by a heated surface. Combust Sci Technol. 1973;7:135–40.CrossRefGoogle Scholar
  17. 17.
    Song X, Williams WR, Schmidt LD, Aris R. Ignition and extinction of homogeneous–heterogeneous combustion: CH4 and C3H8 oxidation on Pt. Proc Combust Inst. 1990;23:1129–37.Google Scholar
  18. 18.
    Vlachos DG. Homogeneous–heterogeneous oxidation reactions over platinum and inert surfaces. Chem Eng Sci. 1996;51:2429–38.CrossRefGoogle Scholar
  19. 19.
    Rinnemo M, Deutschmann O, Behrendt F, Kasemo B. Experimental and numerical investigation of the catalytic ignition of mixtures of hydrogen and oxygen on platinum. Combust Flame. 1997;111:312–26.CrossRefGoogle Scholar
  20. 20.
    Oancea D, Staicu O, Munteanu V, Razus D. Catalytic combustion of the stoichiometric n-butane/air mixture on isothermally heated platinum wire. Catal Lett. 2008;121:247–54.CrossRefGoogle Scholar
  21. 21.
    Staicu O, Munteanu V, Oancea D. The effect of operational parameters on the catalytic combustion of n-butane/air mixture on platinum wire. Catal Lett. 2009;129:124–9.CrossRefGoogle Scholar
  22. 22.
    Staicu O, Munteanu V, Oancea D. Overall kinetics for the catalytic ignition of ethane-air mixtures on platinum. Studia Universitatis Babes Bolyai Chem. 2009;54:193–202.Google Scholar
  23. 23.
    Staicu O, Razus D, Munteanu V, Oancea D. Heterogeneous catalytic ignition of n-butane/air mixture on platinum. Cent Eur J Chem. 2009;7:478–85.CrossRefGoogle Scholar
  24. 24.
    Oancea D, Munteanu V, Razus D. Isothermal catalytic combustion of n-pentane/air mixtures on platinum wire. J Therm Anal Calorim. 2010;102:993–1000.Google Scholar
  25. 25.
    Oancea D, Staicu O, Munteanu V. Kinetics of isothermal ignition of propane/air mixtures on platinum. Rev Roumaine Chim. 2010;55:211–6.Google Scholar
  26. 26.
    Garetto TF, Rincón E, Apesteguía CR. Deep oxidation of propane on Pt-supported catalysts: drastic turnover rate enhancement using zeolite supports. Appl Catal B Environ. 2004;48:167–74.CrossRefGoogle Scholar
  27. 27.
    Frank-Kamenetskii DA. Diffusion and heat transfer in chemical kinetics, chap 1. New York: Plenum Press; 1969.Google Scholar
  28. 28.
    Oancea D, Razus D, Mitu M, Constantinescu S. Hot wire ignition of premixed flammable fuel-air mixtures using isothermally heated platinum wires. Rev Roumaine Chim. 2002;47:91–7.Google Scholar
  29. 29.
    Peng YK, Dawson PT. The adsorption, desorption, and exchange reactions of oxygen, hydrogen, and water on platinum surfaces. I. Oxygen interaction. Can J Chem. 1974;52:3507–17.CrossRefGoogle Scholar
  30. 30.
    Deutschmann O, Behrendt F, Warnatz J. Formal treatment of catalytic combustion and catalytic conversion of methane. Catal Today. 1998;46:155–63.CrossRefGoogle Scholar
  31. 31.
    Reinke M, Mantzaras J, Schaeren R, Bombach R, Inauen A, Schenker S. High-pressure catalytic combustion of methane over platinum: in situ experiments and detailed numerical predictions. Combust Flame. 2004;136:217–40.CrossRefGoogle Scholar
  32. 32.
    Warnatz J, Maas U, Dibble RW. Combustion, chap 6. Berlin, Heidelberg: Springer; 1999.Google Scholar
  33. 33.
    Vannice MA. Kinetics of catalytic reactions, chap 5. New York: Springer; 2005.Google Scholar
  34. 34.
    Oxley JC, Smith JL, Marimaganti K. Developing small-scale tests to predict explosivity. J Therm Anal Calorim. 2010. doi: 10.1007/s10973-010-0983-6.
  35. 35.
    Shen S-J, Wu S-H, Chi J-H, Wang Y-W, Shu C-M. Thermal explosion simulation and incompatible reaction of dicumyl peroxide by calorimetric technique. J Therm Anal Calorim. 2010. doi: 10.1007/s10973-010-0916-4.
  36. 36.
    Heynderickx MP, Thybaut JW, Poelman H, Poelman D, Marin GB. Kinetic modeling of the total oxidation of propane over CuO–CeO2/g-Al2O3. Appl Catal B. 2010;95:26–38.CrossRefGoogle Scholar
  37. 37.
    Kaisare NS, Deshmukh SR, Vlachos DG. Stability and performance of catalytic microreactors: simulations of propane catalytic combustion on Pt. Chem Eng Sci. 2008;63:1098–116.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • Dumitru Oancea
    • 1
    Email author
  • Valentin Munteanu
    • 1
  • Domnina Razus
    • 2
  • Maria Mitu
    • 2
  1. 1.Department of Physical ChemistryUniversity of BucharestBucharestRomania
  2. 2.“Ilie Murgulescu” Institute of Physical ChemistryRoumanian AcademyBucharestRomania

Personalised recommendations