Journal of Thermal Analysis and Calorimetry

, Volume 103, Issue 3, pp 925–933 | Cite as

Co-firing of biomass with coals

Part 1. Thermogravimetric kinetic analysis of combustion of fir (abies bornmulleriana) wood


The chemical composition and reactivity of fir (Abies bornmulleriana) wood under non-isothermal thermogravimetric (TG) conditions were studied. Oxidation of the wood sample at temperatures near 600 °C caused the loss of aliphatics from the structure of the wood and created a char heavily containing C–O functionalities and of highly aromatic character. On-line FTIR recordings of the combustion of wood indicated the oxidation of carbonaceous and hydrogen content of the wood and release of some hydrocarbons due to pyrolysis reactions that occurred during combustion of the wood. TG analysis was used to study combustion of fir wood. Non-isothermal TG data were used to evaluate the kinetics of the combustion of this carbonaceous material. The article reports application of Ozawa–Flynn–Wall model to deal with non-isothermal TG data for the evaluation of the activation energy corresponding to the combustion of the fir wood. The average activation energy related to fir wood combustion was 128.9 kJ/mol, and the average reaction order for the combustion of wood was calculated as 0.30.


Co-firing Combustion Thermogravimetric analysis Non-isothermal kinetics Activation energy of combustion 


  1. 1.
    Di Blasi C. Combustion and gasification rates of lignocellulosic chars. Progress Energ Comb Sci. 2009;35:121–40.CrossRefGoogle Scholar
  2. 2.
    Vamvuka D, Salpigidou N, Kastanaki E, Sfakiotakis S. Possibility of using paper sludge in co-firing applications. Fuel. 2009;88:637–43.CrossRefGoogle Scholar
  3. 3.
    Várhegyi G, Szabó P, Jakab E, Till F. Mathematical modeling of char reactivity in Ar-O2 and CO2–O2 mixtures. Energ Fuels. 1996;10:1208–14.CrossRefGoogle Scholar
  4. 4.
    Ceylan K, Karaca H, Önal Y. Thermogravimetric analysis of pretreated Turkish lignites. Fuel. 1999;78:1109–16.CrossRefGoogle Scholar
  5. 5.
    Adánez J, De Diego LF, García-Labiano F, Abad A, Abanades JC. Determination of biomass char combustion reactivities for fbc applications by a combined method. Ind Eng Chem Res. 2001;40:4317–23.CrossRefGoogle Scholar
  6. 6.
    Otero M, Díez C, Calvo LF, García AI, Mordu A. Analysis of the co-combustion of sewage sludge and coal by TG-MS. Biomass Bioenerg. 2002;22:319–29.CrossRefGoogle Scholar
  7. 7.
    Quanrum L, Haoquan H, Qiang Z, Shengwei Z, Gouohua C. Effect of inorganic matter on reactivity and kinetics of coal pyrolysis. Fuel. 2004;83:713–8.CrossRefGoogle Scholar
  8. 8.
    Mianowski A, Bigda R, Zymla V. Study on kinetıcs of combustion of brick-shaped carbonaceous materials. J Therm Anal Calorim. 2006;84:563–74.CrossRefGoogle Scholar
  9. 9.
    Franceschi E, Cascone I, Nole D. Thermal, XRD and spectrophotometric study on artificially degraded woods. J Therm Anal Calorim. 2008;91:119–25.CrossRefGoogle Scholar
  10. 10.
    Xu Q, Griffin GJ, Jiang Y, Preston C, Bicknell AD GP, Bradbury GP, White N. Study of burning behavior of small scale wood crib with cone calorimeter. J Therm Anal Calorim. 2008;91:787–90.CrossRefGoogle Scholar
  11. 11.
    Yu LJ, Wang S, Jiang XM, Wang N, Zhang CQ. Thermal analysis studies on combustion characteristics of seaweed. J Therm Anal Calorim. 2008;93:611–7.CrossRefGoogle Scholar
  12. 12.
    Otero M, Gómez X, García AI, Morán A. Non-isothermal thermogravimetric analysis of the combustion of two different carbonaceous materials coal and sewage sludge. J Therm Anal Calorim. 2008;93:619–26.CrossRefGoogle Scholar
  13. 13.
    Suarez AC, Tancredi N, Cesar P, Pinheiro C, Yoshida MI. Thermal analysis of the combustion of charcoals from Eucalyptus dunnii obtained at different pyrolysis temperatures. J Therm Anal Calorim. 2010;100:1051–4.CrossRefGoogle Scholar
  14. 14.
    Kastanaki E, Vamvuka D. A comparative reactivity and kinetic study on the combustion of coal–biomass char blends. Fuel. 2006;85:1186–93.CrossRefGoogle Scholar
  15. 15.
    Gil MV, Casal D, Pevida C, Pis JJ, Rubiera F. Thermal behaviour and kinetics of coal/biomass blends during co-combustion. Bioresour Technol. 2010;101:5601–8.CrossRefGoogle Scholar
  16. 16.
    Muthuraman M, Namioka T, Yoshikawa K. Characteristics of co-combustion and kinetic study on hydrothermally treated municipal solid waste with different rank coals: A thermogravimetric analysis. Appl Energ. 2010;87:141–8.CrossRefGoogle Scholar
  17. 17.
    Sahu SG, Sarkar P, Chakraborty N, Adak AK. Thermogravimetric assessment of combustion characteristics of blends of a coal with different biomass chars. Fuel Process Technol. 2010;91:369–78.CrossRefGoogle Scholar
  18. 18.
    Sanchez ME, Otero M, Gomez X, Moran A. Thermogravimetric kinetic analysis of the combustion of biowastes. Renew Energ. 2009;34:1622–7.CrossRefGoogle Scholar
  19. 19.
    Vyazovkin S. Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J Comput Chem. 1997;18:393–402.CrossRefGoogle Scholar
  20. 20.
    Khawam A, Flanagan DR. Role of isoconversional methods in varying activation energies of solid-state kinetics: II. Nonisothermal kinetic studies. Thermochim Acta. 2005;436:101–12.CrossRefGoogle Scholar
  21. 21.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.CrossRefGoogle Scholar
  22. 22.
    Ozawa T. Kinetic analysis of derivative curves in thermal analysis. Therm Anal. 1970;2:301–24.CrossRefGoogle Scholar
  23. 23.
    Flynn JH, Wall LA. Structures and thermal analysis of 1,1,6,6-tetraphenylhexa-2,4-diyne-1,6-diol. Polym Lett. 1966;4:323–8.CrossRefGoogle Scholar
  24. 24.
    Doyle CD. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6:639–42.CrossRefGoogle Scholar
  25. 25.
    Avrami MJ. Kinetics of phase change. I. General theory. Chem Phys. 1939;7:1103–12.Google Scholar
  26. 26.
    Avrami MJ. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. Chem Phys. 1940;8:212–24.Google Scholar
  27. 27.
    Avrami MJ. Kinetics of phase change. III. Granulation, phase change, and microstructure. Chem Phys. 1941;9:177–84.Google Scholar
  28. 28.
    Flynn JH, Wall LA. A general treatment of the thermogravimetry of polymers. J Res Natl Bur Stand. 1966;70A:487–523.Google Scholar
  29. 29.
    Yanfen L, Xiaoqian M. Thermogravimetric analysis of the co-combustion of coal and paper mill sludge. Appl Energ. 2010;87:3526–32.CrossRefGoogle Scholar
  30. 30.
    Di Nola G, de Jong W, Spliethoff H. TG-FTIR characterization of coal and biomass single fuels and blends under slow heating rate conditions: partitioning of the fuel-bound nitrogen. Fuel Process Technol. 2010;91:103–15.CrossRefGoogle Scholar
  31. 31.
    Shevla G. Comprehensive analytical chemistry. In: Shevla G, editor. Analytical infrared spectroscopy, vol. VI. Amsterdam: Elsevier; 1976. pp. 334.Google Scholar
  32. 32.
    Karabakan A, Yürüm Y. Effect of the mineral matrix in the reactions of shales. 2. Oxidation reactions of Turkish Göynük and U.S. Western Reference shales. Fuel. 2000;79:785–92.CrossRefGoogle Scholar
  33. 33.
    Pakdel H, Grandmaison JL, Roy C. Analysis of wood vacuum pyrolysis solid residues by diffuse reflectance infrared Fourier transform spectroscopy. Can J Chem. 1989;67:310–4.CrossRefGoogle Scholar
  34. 34.
    Pandey KK. Study of the effect of photo-irradiation on the surface chemistry of wood. Polym Degrad Stab. 2005;90:9–20.CrossRefGoogle Scholar
  35. 35.
    Bernstein MP, Cruikshank DP, Sandford SA. Near-infrared laboratory spectra of solid H2O/CO2 and CH3OH/CO2 ice mixtures. Icarus. 2005;179:527–34.CrossRefGoogle Scholar
  36. 36.
    Lemus R. Vibrational excitations in H2O in the framework of a local model. J Mol Spectrosc. 2004;225:73–92.CrossRefGoogle Scholar
  37. 37.
    Wu Y-W, Sun S-Q, Zhou Q, Tao J-X, Noda I. Volatility-dependent 2D IR correlation analysis of traditional Chinese medicine ‘Red Flower Oil’ preparation from different manufacturers. J Mol Struct. 2008;882:107–15.CrossRefGoogle Scholar
  38. 38.
    Kök MV. Temperature-controlled combustion and kinetics of different rank coal samples. J Therm Anal Calorim. 2005;79:175–80.CrossRefGoogle Scholar
  39. 39.
    Coats AW, Redfern JP. Kinetics parameters from thermogravimetric data. Nature. 1964;201:68–9.CrossRefGoogle Scholar
  40. 40.
    Otero M, Calvo LF, Gil MV, Garcia AI, Moran A. Co-combustion of different sewage sludge and coal: a non-isothermal thermogravimetric kinetic analysis. Bioresour Technol. 2008;99:6311–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • Ahu Gümrah Dumanli
    • 1
  • Sinem Taş
    • 1
  • Yuda Yürüm
    • 1
  1. 1.Faculty of Engineering and Natural SciencesSabanci UniversityIstanbulTurkey

Personalised recommendations