Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 103, Issue 3, pp 1027–1030 | Cite as

Thermal properties of sulfonic acid group functionalized Brönsted acidic ionic liquids

  • Ananda S. Amarasekara
  • Onome S. Owereh
Article

Abstract

Thermal decomposition onset temperatures have been measured for a total of 24 methylimidazolium, triethanolammonium, and pyridinium type sulfonic acid groups functionalized Brönsted acidic ionic liquids with Cl, Br, SO4 2−, PO4 3−, BF4 , CH3CO2 , and CH3SO3 anions, using thermogravimetric analysis. Thermal stabilities of these sulfonic acid group functionalized ionic liquids decreases in the order, methylimidazolium > triethanolammonium > pyridinium. The methylimidazolium, pyridinium, and triethanolammonium ionic liquids investigated showed decomposition onset temperatures (air) in the 213–353, 167–240, and 230–307 °C ranges, respectively. Additionally, the decomposition temperatures of these ionic liquids are highly dependent on the nature of the anion.

Keywords

Acidic ionic liquids Thermal stability TG DTG 

Notes

Acknowledgements

Authors would like to thank Center for Environmentally Beneficial Catalysis (CEBC), University of Kansas, American Chemical Society-PRF grant UR1-49436 and NSF grant CBET-0929970 for financial support.

References

  1. 1.
    Wasserscheid P, Welton T. Ionic liquids in synthesis. Weinheim: Wiley-VCH Verlag GmbH; 2008.Google Scholar
  2. 2.
    Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev. 1999;99:2071–83.CrossRefGoogle Scholar
  3. 3.
    Lee SG. Functionalized imidazolium salts for task-specific ionic liquids and their applications. Chem Commun. 2006;10:1049–63.CrossRefGoogle Scholar
  4. 4.
    Plechkova NV, Seddon KR. Applications of ionic liquids in the chemical industry. Chem Soc Rev. 2008;37:123–50.CrossRefGoogle Scholar
  5. 5.
    Zhao H, Malhotra SV. Applications of ionic liquids in organic synthesis. Aldrichim Acta. 2002;35:75–83.CrossRefGoogle Scholar
  6. 6.
    Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 2001;3:156–64.CrossRefGoogle Scholar
  7. 7.
    Kamavaram V, Reddy RG. Thermal stabilities of di-alkylimidazolium chloride ionic liquids. Int J Therm Sci. 2008;47:773–7.CrossRefGoogle Scholar
  8. 8.
    Arellano IHJ, Guarino JG, Paredes FU, Arco SD. Thermal stability and moisture uptake of 1-alkyl-3-methylimidazolium bromide. J Therm Anal Calorim. 2010. doi: 10.1007/s10973-010-0992-5.
  9. 9.
    Ngo HL, LeCompte K, Hargens L, McEwen AB. Thermal properties of imidazolium ionic liquids. Thermochim Acta. 2000;357–358:97–102.CrossRefGoogle Scholar
  10. 10.
    Kosmulski M, Gustafsson J, Rosenholm JB. Thermal stability of low temperature ionic liquids revisited. Thermochim Acta. 2004;412:47–53.CrossRefGoogle Scholar
  11. 11.
    Del Sesto RE, McCleskey TM, Macomber C, Ott KC, Koppisch AT, Baker GA, Burrell AK. Limited thermal stability of imidazolium and pyrrolidinium ionic liquids. Thermochim Acta. 2009;491:118–20.CrossRefGoogle Scholar
  12. 12.
    Davis JH. Task-specific ionic liquids. Chem Lett. 2004;33:1072–7.CrossRefGoogle Scholar
  13. 13.
    Fei ZF, Geldbach TJ, Zhao DB, Dyson PJ. From dysfunction to bis-function: on the design and applications of functionalised ionic liquids. Chem Eur J. 2006;12:2122–30.CrossRefGoogle Scholar
  14. 14.
    Li X, Zhao D, Fei Z, Wang L. Applications of functionalized ionic liquids. Sci China Ser B. 2006;49:385–401.CrossRefGoogle Scholar
  15. 15.
    Jiang D, Wang YY, Tu M, Dai LY. Esterification of acetonitrile with alcohols in novel Brönsted acidic ionic liquids. React Kinet Catal Lett. 2008;95:265–71.CrossRefGoogle Scholar
  16. 16.
    Zhao Y, Long J, Deng F, Liu X, Li Z, Xia C, Peng J. Catalytic amounts of Brønsted acidic ionic liquids promoted esterification: study of acidity–activity relationship. Catal Commun. 2009;10:732–6.CrossRefGoogle Scholar
  17. 17.
    Qiao K, Yokoyama C. Novel acidic ionic liquids catalytic systems for Friedel-crafts alkylation of aromatic compounds with alkenes. Chem Lett. 2004;33:472–3.CrossRefGoogle Scholar
  18. 18.
    Qiao K, Yokoyama C. Nitration of aromatic compounds with nitric acid catalyzed by ionic liquids. Chem Lett. 2004;33:808–9.CrossRefGoogle Scholar
  19. 19.
    Qiao K, Deng Y, Yokoyama C, Sato H, Yamashina M. Preparation of ε-caprolactam via Beckmann rearrangement of cyclohexanone oxime: a mild and recyclable process. Chem Lett. 2004;33:1350–4.CrossRefGoogle Scholar
  20. 20.
    Gu Y, Shi F, Deng Y. SO3H-functionalized ionic liquid as efficient, green and reusable acidic catalyst system for oligomerization of olefins. Catal Commun. 2003;4:597–601.CrossRefGoogle Scholar
  21. 21.
    Amarasekara AS, Owereh OS. Hydrolysis and decomposition of cellulose in Brönsted acidic ionic liquids under mild conditions. Ind Eng Chem Res. 2009;48:10152–5.CrossRefGoogle Scholar
  22. 22.
    Amarasekara AS, Owereh OS. Synthesis of a sulfonic acid functionalized acidic ionic liquid modified silica catalyst and applications in the hydrolysis of cellulose. Catal Commun. 2010;11:1072–5.CrossRefGoogle Scholar
  23. 23.
    Yang Q, Wei Z, Xing H, Ren Q. Brönsted acidic ionic liquids as novel catalysts for the hydrolyzation of soybean isoflavone glycosides. Catal Commun. 2008;9:1307–11.CrossRefGoogle Scholar
  24. 24.
    Zhu GY, Wang R, Liu GH, Xu LQ, Zhang B, Wu XQ. Synthesis of multi-hydroxyl and sulfonyl dual-functionalized room temperature ionic liquids. Chin Chem Lett. 2007;18:633–5.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  1. 1.Department of ChemistryPrairie View A&M UniversityPrairie ViewUSA

Personalised recommendations