Journal of Thermal Analysis and Calorimetry

, Volume 104, Issue 2, pp 661–669 | Cite as

Dehydration behavior of FGD gypsum by simultaneous TG and DSC analysis

Article

Abstract

The dehydration behaviors of FGD gypsums from three power plants were investigated at N2 atmosphere (autogenous and negligible partial pressure of water, \( P_{{{\text{H}}_{ 2} {\text{O}}}} \)) in non-isothermal and isothermal condition. The dehydration of gypsum proceeded through one step, i.e., CaSO4·2H2O → γ-CaSO4 (γ-anhydrite) or two steps, i.e., CaSO4·2H2O → CaSO4·0.5H2O (hemihydrate) → γ-CaSO4 depending on temperature and \( P_{{{\text{H}}_{ 2} {\text{O}}}} \). The discrepancies of three FGD gypsums on dehydration behavior were very likely due to the different crystalline characteristics (size and habit) and impurities, such as fly ash and limestone. Experimental data of non-isothermal analysis have been fitted with two ‘model-free’ kinetic methods and those of isothermal analysis have been fitted with Avrami and linear equation. The apparent empirical activation energies (Ea) suggest that the transition from gypsum to hemihydrate is mainly controlled by nucleation and growth mechanism, while the transition from gypsum to γ-anhydrite is mostly followed by phase boundary mechanism.

Keywords

FGD gypsum Dehydration behavior Kinetics TG/DSC Crystalline characteristics 

References

  1. 1.
    Freyer D, Voigt W. Crystallization and phase stability of CaSO4 and CaSO4-based salts. Monatsh Chem. 2003;134:693–719.Google Scholar
  2. 2.
    Solberg C, Evju C, Emanuelson A, Hansen S. Crystal structures of cementitious compounds. Part 3: calcium sulfates. ZKG Int. 2002;55:94–7.Google Scholar
  3. 3.
    Christensen AN, Olesen M, Cerenius Y, Jensen TR. Formation and transformation of five different phases in the CaSO4·H2O system: crystal structure of subhydrate β-CaSO4·0.5H2O and soluble anhydrite CaSO4. Chem Mater. 2008;20:2124–32.CrossRefGoogle Scholar
  4. 4.
    Charola AE, Pűhringer J, Steiger M. Gypsum: a review of its role in the deterioration of building materials. Environ Geol. 2007;52:339–52.CrossRefGoogle Scholar
  5. 5.
    Ballirano P, Melis E. Thermal behaviour and kinetics of dehydration of gypsum in air from in situ real-time laboratory parallel-beam X-ray powder diffraction. Phys Chem Mineral 2009;36:391–402.CrossRefGoogle Scholar
  6. 6.
    McAdie HG. The effect of water vapor upon the dehydration of CaSO4·2H2O. Can J Chem. 1964;42:792–801.CrossRefGoogle Scholar
  7. 7.
    Bushuev NN, Maslennikov BM, Borisov VM. X-ray diffraction investigation of CaSO4·0.67H2O. Russ J Inorg Chem. 1982;27:341–3.Google Scholar
  8. 8.
    Christensen AN, Lehmann MS, Pannetier J. A time-resolved neutron powder diffraction investigation of the hydration of CaSO4·1/2D2O and of the dehydration of CaSO4·2D2O. J Appl Cryst. 1985;18:170–2.CrossRefGoogle Scholar
  9. 9.
    Abriel W, Reisdorf K, Pannetier J. Dehydration reactions of gypsum: a neutron and X-ray diffraction study. J Solid State Chem. 1990;85:23–30.CrossRefGoogle Scholar
  10. 10.
    Putnis A, Winkler B. In situ IR spectroscopic and thermogravimetric study of the dehydration of gypsum. Mineral Mag. 1990;54:123–8.CrossRefGoogle Scholar
  11. 11.
    Strydom CA, Hudson-Lamb DL, Potgieter JH, Dagg E. The thermal dehydration of synthetic gypsum. Thermochim Acta. 1995;269(/270):631–8.CrossRefGoogle Scholar
  12. 12.
    Dos Santos VA, Pereira JAFR, Dantas CC. Kinetics of thermal dehydration of gypsum ore for obtaining beta hemihydrate in a fluidized bed. Bull Soc Chim Belg. 1997;6:253–60.Google Scholar
  13. 13.
    Chang H, Huang PJ, Hou SC. Application of thermo-Raman spectroscopy to study dehydration of CaSO4·2H2O and CaSO4·0.5H2O. Mater Chem Phys. 1999;58:12–9.CrossRefGoogle Scholar
  14. 14.
    Carbone M, Ballirano P, Caminiti R. Kinetics of gypsum dehydration at reduced pressure: an energy dispersive X-ray diffraction study. Eur J Mineral. 2008;20:621–7.CrossRefGoogle Scholar
  15. 15.
    Molony B, Ridge MJ. Kinetics of the dehydration of calcium sulphate dihydrate in vacuo. Aust J Chem. 1968;21:1063–5.CrossRefGoogle Scholar
  16. 16.
    Sarma LP, Prasad PSR, Ravikumar N. Raman spectroscopic study of phase transitions in natural gypsum. J Raman Spectrosc. 1998;29:851–6.CrossRefGoogle Scholar
  17. 17.
    Prasad PSR, Pradhan A, Gowd TN. In situ micro-Raman investigation of dehydration mechanism in natural gypsum. Curr Sci. 2001;80:1203–7.Google Scholar
  18. 18.
    Chio CH, Sharma SK, Muenow DW. Micro-Raman studies of gypsum in the temperature range between 9 K and 373 K. Am Mineral. 2004;89:390–5.Google Scholar
  19. 19.
    Prasad PSR, Chaitanya VK, Prasad KS, Rao DN. Direct formation of the γ-CaSO4 phase in dehydration process of gypsum: in situ FTIR study. Am Mineral. 2005;90:672–8.CrossRefGoogle Scholar
  20. 20.
    Ball MC, Norwood LS. Studies in the system calcium sulphate-water. Part I. Kinetics of dehydration of calcium sulphate dihydrate. J Chem Soc A. 1969;1633–7.Google Scholar
  21. 21.
    Badens E, Llewellyn P, Fulconis JM, Jourdan Veesler CS, Boistelle R, et al. Study of gypsum dehydration by controlled transformation rate thermal analysis (CRTA). J Solid State Chem. 1998;139:37–44.CrossRefGoogle Scholar
  22. 22.
    Fatu D. Kinetics of gypsum dehydration. J Therm Anal Calorim. 2001;65:213–20.CrossRefGoogle Scholar
  23. 23.
    Hudson-Lamb DL, Strydom CA, Potgieter JH. The thermal dehydration of natural gypsum and pure calcium sulphate dehydrate (gypsum). Thermochim Acta. 1996;282(/283):483–92.CrossRefGoogle Scholar
  24. 24.
    Jordan G, Astilleros JM. In situ HAFM study of the thermal dehydration on gypsum (010) surfaces. Am Mineral. 2006;91:619–27.CrossRefGoogle Scholar
  25. 25.
    Strydom CA, Potgieter JH. Dehydration behaviour of a natural gypsum and a phosphogypsum during milling. Thermochim Acta. 1999;332:89–96.CrossRefGoogle Scholar
  26. 26.
    Cave SR, Holdich RG. The dehydration kinetics of gypsum in a fluidized bed reactor. Chem Eng Res Des. 2000;78:971–8.CrossRefGoogle Scholar
  27. 27.
    Deutsch Y, Nathan Y, Sarig S. Thermogravimetric evaluation of the kinetics of the gypsum-hemihydrate-soluble anhydrite transitions. J Therm Anal Calorim. 1994;42:159–74.CrossRefGoogle Scholar
  28. 28.
    Hamm H, Kersten HJ, Hueller R. 25 years experience gained in the European Gypsum Industry with the use of FGD gypsum. CEM Int. 2004;4:92–102.Google Scholar
  29. 29.
    Guan B, Yang L, Wu Z, Shen Z, Ma X, Ye Q. Preparation of α-calcium sulfate hemihydrate from FGD gypsum in K, Mg-containing concentrated CaCl2 solution under mild conditions. Fuel. 2009;88:1286–93.CrossRefGoogle Scholar
  30. 30.
    Follner S, Wolter A, Helming K, Silber C, Bartels H, Follner H. On the real structure of gypsum crystals. Cryst Res Tech. 2002;37:207–18.CrossRefGoogle Scholar
  31. 31.
    Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, et al. Computational aspects of kinetic analysis. Part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355:125–43.CrossRefGoogle Scholar
  32. 32.
    Farjas J, Butchosa N, Roura P. A simple kinetic method for the determination of the reaction model from non-isothermal experiments. J Therm Anal Calorim. doi:10.1007/s10973-010-0737-5.

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  1. 1.Department of Environmental EngineeringZhejiang UniversityHangzhouChina
  2. 2.Department of Chemical EngineeringNingbo University of TechnologyNingboChina

Personalised recommendations