Journal of Thermal Analysis and Calorimetry

, Volume 104, Issue 1, pp 331–338 | Cite as

Enhanced interfacial adhesion, mechanical, and thermal properties of natural flour-filled biodegradable polymer bio-composites

  • Hee-Soo Kim
  • Byoung-Ho Lee
  • Sena Lee
  • Hyun-Joong KimEmail author
  • John R. Dorgan


This study examined the interfacial adhesion, mechanical, and thermal properties of compatibilizing agent-treated and non-treated biocomposites as a function of the type of compatibilizing agent. The tensile strength, interfacial adhesion, and heat deflection temperature (HDT) of maleic anhydride-grafted poly(butylene succinate) (PBS-MA) and maleic anhydride-grafted poly(lactic acid) (PLA-MA)-treated biocomposites are greater than those of untreated maleic anhydride-grafted poly(styrene-b-ethylene-co-butylene-b-styrene) triblock copolymer (SEBS-MA) and maleic anhydride-grafted polypropylene (MAPP)-treated biocomposites. The storage modulus (E′) values and the tan δmax temperatures (T g) of PBS-MA and PLA-MA-treated biocomposites were slightly higher than that of the untreated biocomposites.


Natural flour Biodegradable polymer Biocomposites Mechanical properties Viscoelastic properties Heat deflection temperature (HDT) 



This study was supported financially by the Cleaner Production R&D Program and Colorado Center for Biorefining and Biofuels (C2B2).


  1. 1.
    Termpittayapaisith A. Thailand’s policies to promote bioplastics. In: Inno bioplastic 2006 “Asia’s First Bioplastic Conference and Exhibition”. 2006. p. 15–16.Google Scholar
  2. 2.
    Wu C-S. Improving polylactide/starch biocomposites by grafting polylactide with acrylic acid-characterization and biodegradability assessment. Macromol Biosci. 2005;5:352–61.CrossRefGoogle Scholar
  3. 3.
    Kim H-S, Kim H-J, Lee J-W, Choi I-G. Biodegradability of bio-flour filled biodegradable poly(butylene succinate) bio-composites in natural and compost soil. Polym Degrad Stabil. 2006;91:1117–27.CrossRefGoogle Scholar
  4. 4.
    Li H, Chang J, Cao A, Wang J. In vitro evaluation of biodegradable polybutylene succinate as a novel biomaterial. Macromol Biosci. 2005;5:433–40.CrossRefGoogle Scholar
  5. 5.
    Mothe CG, Azevedo AD, Drumond WS, Wang SH. Thermal properties of amphiphilic biodegradable triblock copolymer of L,L-lactide and ethylene glycol. J Therm Anal Calorim. 2010;101:229–33.CrossRefGoogle Scholar
  6. 6.
    Shanks RA, Hodzic A, Ridderhof D. Composites of poly(lactic acid) with flax fibers modified by interstitial polymerization. J Appl Polym Sci. 2006;99:2305–13.CrossRefGoogle Scholar
  7. 7.
    Shih YF, Wang TY, Jeng RJ, Wu JY, Teng CC. Biodegradable nanocomposites based on poly(butylene succinate)/organoclay. J Polym Environ. 2007;15:151–8.CrossRefGoogle Scholar
  8. 8.
    Kim H-S, Lee B-H, Choi S-W, Kim S, Kim H-J. The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bio-flour filled polypropylene composites. Compos Part A. 2007;38:1473–82.CrossRefGoogle Scholar
  9. 9.
    Mishra S, Mohanty AK, Drzal LT, Misra M, Hinrichsen G. A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromol Mater Eng. 2004;289:955–74.CrossRefGoogle Scholar
  10. 10.
    Han G, Lei Y, Wu Q, Kojima Y, Suzuki S. Bamboo-fiber filled high density polyethylene composites: effect of coupling treatment and nanoclay. J Polym Environ. 2008;16:123–30.CrossRefGoogle Scholar
  11. 11.
    Zhang SY, Zhang Y, Bousmina M, Sain M, Choi P. Effects of raw fiber materials, fiber content, and coupling agent content on selected properties of polyethylene/wood fiber composites. Polym Eng Sci. 2007;47:1678–87.CrossRefGoogle Scholar
  12. 12.
    Tserki V, Matzinos P, Zafeiropoulos NE, Panayiotou C. Development of biodegradable composites with treated and compatibilized lignocellulosic fibers. J Appl Polym Sci. 2006;100:4703–10.CrossRefGoogle Scholar
  13. 13.
    Demir H, Atikler U, Balkose D, Tihminlioglu F. The effect of fiber surface treatments on the tensile and water sorption properties of polypropylene-luffa fiber composites. Compos Part A. 2006;37:447–56.CrossRefGoogle Scholar
  14. 14.
    Kim H-S, Kim S, Kim H-J, Yang H-S. Thermal properties of bio-flour filled polyolefin composites with different compatibilizing agent type and content. Thermochim acta. 2006;451:181–8.CrossRefGoogle Scholar
  15. 15.
    Wu C-S. Physical properties and biodegradability of maleated polycaprolactone starch composite. Polym Degrad Stabil. 2003;80:127–34.CrossRefGoogle Scholar
  16. 16.
    Gaylod NG, Mehta R, Kumar V, Tazi M. High density polyethylene-g-maleic anhydride preparation in presence of electron donors. J Appl Polym Sci. 1989;38:359–71.CrossRefGoogle Scholar
  17. 17.
    Tserki V, Matzinos P, Panayiotou C. Novel biodegradable composites based on treated lignocellulosic waste flour as filler Part II. Development of biodegradable composites using treated and compatibilized waste flour. Compos Part A. 2006;37:1231–8.CrossRefGoogle Scholar
  18. 18.
    Kim H-S, Yang H-S, Kim H-J. Biodegradability and mechanical properties of agro-flour filled polybutylene succinate biocomposites. J Appl Polym Sci. 2005;97:1513–21.CrossRefGoogle Scholar
  19. 19.
    Chen B, Sun K. Poly (ε-caprolactone)/hydroxyapatite composites: effects of particle size, molecular weight distribution and irradiation on interfacial interaction and properties. Polym Test. 2005;24:64–70.CrossRefGoogle Scholar
  20. 20.
    Wang Y, Yeh F-C, Lai SM, Chan H-C, Shen H-F. Effectiveness of functionalized polyolefins as compatibilizers for polyethylene/wood flour composites. Polym Eng Sci. 2003;43:933–45.CrossRefGoogle Scholar
  21. 21.
    Hristov V, Vasileva S. Dynamic mechanical and thermal properties of modified polypolypropylene wood fiber composites. Macromol Mater Eng. 2003;288:798–806.CrossRefGoogle Scholar
  22. 22.
    Kim H-S, Kim H-J, Cho D. Thermal analysis of hydrolysis and degradation of biodegradable polymer and bio-composites. J Therm Anal Calorim. 2009;96:211–8.CrossRefGoogle Scholar
  23. 23.
    Mohanty S, Verma SK, Nayak SK. Dynamic mechanical and thermal properties of MAPE treated jute/HDPE composites. Compos Sci Technol. 2005;3–4:538–47.Google Scholar
  24. 24.
    Wong ACY. Heat deflection characteristics of polypropylene and polypropylene/polyethylene binary systems. Compos Part B. 2003;34:199–208.CrossRefGoogle Scholar
  25. 25.
    Liu W, Drzal LT, Mohanty AK, Misra M. Influence of processing methods and fiber length on physical properties of kenaf fiber reinforced soy based biocomposites. Compos Part B. 2007;38:352–9.CrossRefGoogle Scholar
  26. 26.
    Singh S, Mohanty AK. Wood fiber reinforced bacterial bioplastic composites: fabrication and performance evaluation. Compos Sci Technol. 2007;67:1753–63.CrossRefGoogle Scholar
  27. 27.
    Huda MS, Drzal LT, Mohanty AK, Misra M. The effect of silane treated and untreated talc on the mechanical and physico-mechanical properties of polylactic acid/newspaper fibers/talc hybrid composites. Compos Part B. 2007;38:367–79.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • Hee-Soo Kim
    • 1
    • 2
  • Byoung-Ho Lee
    • 2
  • Sena Lee
    • 2
  • Hyun-Joong Kim
    • 2
    • 3
    Email author
  • John R. Dorgan
    • 4
  1. 1.Research and Development Institute, Research 2 TeamWoongjin Chemical Co., LtdSuwonRepublic of Korea
  2. 2.Laboratory of Adhesion and Bio-Composites, Program in Environmental Materials ScienceSeoul National UniversitySeoulRepublic of Korea
  3. 3.Research Institute for Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
  4. 4.Colorado Center for Biorefining and Biofuels, Department of Chemical and Biochemical EngineeringColorado School of MinesGoldenUSA

Personalised recommendations