Journal of Thermal Analysis and Calorimetry

, Volume 104, Issue 2, pp 797–803 | Cite as

Heterogeneous interaction between zwitterions of amino acids and glycerol in aqueous solutions at 298.15 K

  • Y. Li
  • Z. Yingyuan
  • L. Yonghui
  • J. Jing
  • W. Xiaoqing


The enthalpies of mixing of six kinds of amino acid (glycine, L-alanine, L-valine, L-serine, L-threonine, and L-proline) with glycerol in aqueous solutions and the enthalpies of diluting of amino acid and glycerol aqueous solutions have been determined by flow microcalorimetry at 298.15 K. Employing McMillan–Mayer theory, the enthalpies of mixing and diluting have been used to calculate heterogeneous enthalpic pairwise interaction coefficients (hxy) between amino acids and glycerol in aqueous solutions. Combining hxy values of amino acids with glycol in the previous study, the variations of the hxy values between amino acids and glycerol have been interpreted from the point of view of solute–solute interactions.


Amino acid Glycerol Heterotactic enthalpic pairwise interaction Solute–solute interactions 


  1. 1.
    Kollman P. The chemistry of enzyme action. New York: Elsevier; 1984. p. 52–8. Page M. I.Google Scholar
  2. 2.
    Nemethy G, Peer WJ, Scheraga HA. Effect of protein-solvent interactions on protein conformation. Annu Rev Biophys Bioeng. 1981;10:459–97.CrossRefGoogle Scholar
  3. 3.
    Pałecz B, Nadolna A. Heterogeneous interaction between zwitterions of some l-α-amino acids and ethanol molecule in water at 298.15 K. Fluid Phase Equilibria. 2006;250:49–52.CrossRefGoogle Scholar
  4. 4.
    Pałecz B. Enthalpic pair interaction coefficient between zwitterions of l-α-amino acids and urea molecule as a hydrophobicity parameter of amino acid side chains. J Am Chem Soc. 2005;127:17768–71.CrossRefGoogle Scholar
  5. 5.
    Kochergina LA, Ratkova EL, Emeljanov AV. Standard enthalpies of formation of the phenylalanine isomers and the products of their dissociation in aqueous solutions. J Therm Anal Calorim. 2008;91:775–8.CrossRefGoogle Scholar
  6. 6.
    Pałecz B. Enthalpic homogeneous pair interaction coefficients of l-α-amino acids as a hydrophobicity parameter of amino acid side chains. J Am Chem Soc. 2002;124:6003–8.CrossRefGoogle Scholar
  7. 7.
    Valentin GB, Igor NM. The enthalpies of solution of l-cysteine, l-serine and l-asparagine in aqueous solutions of some alcohols at 298.15 K. J Solution Chem. 2009;38:1217–23.CrossRefGoogle Scholar
  8. 8.
    Zhu Y, Yu L, Pang XH. Heterotactic enthalpic interactions of amino acids with butanol in aqueous solutions. J Chem Eng Data. 2009;54:1910–2.CrossRefGoogle Scholar
  9. 9.
    Yu L, Yuan SL, Hu XG, Lin RS. Studies on the interactions between some α-amino acids with a non-polar side chain and two saturated cyclic ethers at 298.15 K: enthalpic measurement and computer simulation. Chem Eng Sci. 2006;61:794–801.CrossRefGoogle Scholar
  10. 10.
    Yu L, Geng F, Lin XH, Zhu Y, Zheng LQ, Li GZ. Enthalpic pairwise interactions between some amino acids and 2-butanone in aqueous solutions at 298.15 K. J Chem Eng Data. 2007;52:1715–9.CrossRefGoogle Scholar
  11. 11.
    Liu HJ, Chen Y, Zhang HL, Lin RS. Studies on the interaction of l-valine and l-threonine with saccharides in aqueous solutions at 298.15 K. J Chem Eng Data. 2007;52:609–12.CrossRefGoogle Scholar
  12. 12.
    Zhuo KL, Liu Q, Wang YP. Volumetric and viscosity properties of monosaccharides in aqueous amino acids solutions at 298.15 K. J Chem Eng Data. 2006;51:919–27.CrossRefGoogle Scholar
  13. 13.
    Wang X, Xu L, Lin RS. Enthalpies of dilution of glycine, l-alanine and l-serine in aqueous potassium chloride solutions. Thermochim Acta. 2005;425:31–7.CrossRefGoogle Scholar
  14. 14.
    Holst JV, Kersten SA, Hogendoorn KA. Physiochemical properties of several aqueous potassium amino acid salts. J Chem Eng Data. 2008;53:1286–91.CrossRefGoogle Scholar
  15. 15.
    Rezaei Behbehan G, Mirzaie M. A High performance method for thermodynamic study on the binding of copper ion and glycine with Alzheimer’s amyloid-peptide. J Therm Anal Calorim. 2009;96(2):631–5.CrossRefGoogle Scholar
  16. 16.
    Romero CM, González ME, Lamprecht I. Enthalpy of dilution of aliphatic amides in aqueous solutions at temperatures between 293.15 K and 308.15 K. Thermochimica Acta. 2009;488:49–53.CrossRefGoogle Scholar
  17. 17.
    Liu M, Zhu LY, Li B, Zhao Q, Sun DZ. Enthalpies of dilution of acetamide and N, N-dimethylformamide in aqueous sodium chloride solutions at 298.15 K. J Chem Eng Data. 2008;53:1498–502.CrossRefGoogle Scholar
  18. 18.
    Liu M, Zhu LY, Sun XJ, Xu XY, Sun DZ, Li LW. Enthalpies of interaction of (2R, 3S, 4S, 5S)-hexane-1, 2, 3, 4, 5, 6-hexol with acetamide and N, N-dimethylformamide in aqueous sodium chloride solutions at 298.15 K. J Chem Eng Data. 2009;54:2452–6.CrossRefGoogle Scholar
  19. 19.
    Wang X, Ma L, Lin RS. Enthalpies of interactions of N, N-dimethylformamide in aqueous glucose and sucrose solutions at 298. 15 K. J Chem Thermodyn. 2005;37:371–5.CrossRefGoogle Scholar
  20. 20.
    Wang LL, Liu M, Zhu LY, Li H, Sun DZ, Di YY. Enthalpies of dilution of N-glycylglycinein aqueous sodium chloride and potassium chloride solutions at 298.15 K. J Chem Eng Data. 2009;54:2251–5.CrossRefGoogle Scholar
  21. 21.
    Valeriy IS, Valentin GB. Enthalpies of solution of glycylglycine and diglycylglycinein aqueous alcohols at 298.15 K. Thermochimica Acta. 2008;471:97–9.CrossRefGoogle Scholar
  22. 22.
    Hackel M, Hinz HJ, Hedwig GR. The partial molar volumes of some tetra- and pentapeptides in aqueous solutions: a test of amino acid side-chain group additivity for unfolded proteins. Phys Chem Chem Phys. 2000;2:4843–9.CrossRefGoogle Scholar
  23. 23.
    Hackel M, Hinz HJ, Hedwig GR. Tripeptides in aqueous solution: model compounds for the evaluation of the partial molar heat capacities of amino acid side-chains in proteins. Thermochim. Acta. 1998;308:23–34.CrossRefGoogle Scholar
  24. 24.
    Henryk P, Boźenna N. Calorimetric studies of interactions of some peptides with electrolytes, urea and ethanol in water at 298.15 K. J Therm Anal Calorim. 2010;102:31–6.CrossRefGoogle Scholar
  25. 25.
    Gorboletova GG, Kochergina LA. Thermochemical investigation of acid-base interactions in peptide solutions. J Therm Anal Calorim. 2007;87(2):561–5.CrossRefGoogle Scholar
  26. 26.
    Fujita Y, Iwasa Y, Noda Y. The effect of polyhydric alcohol on the thermal denaturation of lysozyme as measured by differential scanning calorimetry. Bull Chem Soc Jpn. 1982;55:1896–900.CrossRefGoogle Scholar
  27. 27.
    Pałecz B, Piekarski H. Enthalpies of solution of glycine in aqueous solutions of 1, 2-diols and glycerol at 25 °C. J Solution Chem. 1997;26:621–9.CrossRefGoogle Scholar
  28. 28.
    Yu L, Li SX, Zhu Y, Pang XH, Geng F, Li XP. Enthalpic interactions of some α-amino acids with glycol in aqueous solutions at 298.15 K. Thermochim Acta. 2009;490:27–31.CrossRefGoogle Scholar
  29. 29.
    MacMillan WG, Mayer JE. The statistical thermodynamics of multicomponents systems. J Chem Phys. 1945;13:276–305.CrossRefGoogle Scholar
  30. 30.
    Hallenga K, Grigera IR, Berenelsen HJ. Influence of hydrophobic solutes on the dynamic behavior of water. J Phys Chem. 1980;84:2381–90.CrossRefGoogle Scholar
  31. 31.
    Back JF, Oakenfull D, Simith MB. Increased thermal stability of proteins in the presence of sugars and polyalcohols. Biochemistry. 1979;18:5191–6.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • Y. Li
    • 1
  • Z. Yingyuan
    • 1
  • L. Yonghui
    • 1
  • J. Jing
    • 1
  • W. Xiaoqing
    • 1
  1. 1.Key Lab for Colloid and Interface Chemistry of Shandong University, Ministry of EducationJinanPeople’s Republic of China

Personalised recommendations