Journal of Thermal Analysis and Calorimetry

, Volume 104, Issue 2, pp 635–643 | Cite as

Thermal behavior and evolution of the mineral phases of Brazilian red mud

  • J. M. Rivas MercuryEmail author
  • A. A. Cabral
  • A. E. M. Paiva
  • R. S. Angélica
  • R. F. Neves
  • T. Scheller


This article studied the thermal behavior and the evolution of the crystalline phases with temperature of the red mud (bauxite tailing) from an aluminum industry at Maranhão, North-Northwestern Brazil. The experiments were carried out by Field Emission Scanning Electron Microscopy (FE-SEM), Simultaneous Thermal Analysis (TG–DSC), Optical Dilatometry up to 1623 K, and X-ray diffraction (XRD) of previously heated samples between 523 and 1523 K. The crystalline phases and the amorphous contents were quantified on raw and heated samples (at 1523 K) according to the Rietveld Quantitative Analysis (RQA) method. The data obtained showed that the raw red mud is composed by a mixture of seven different phases (hematite, goethite, sodalite, anatase, gibbsite, calcite, and amorphous). Finally in the interval of 1023–1523 K the following crystalline phases: hematite, nepheline, sodalite, anatase, perovskite, and pseudobrookite have been observed.


Red mud Bauxite tailing Thermal behavior Rietveld 



The authors wish to thank the Fundação ao Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Prof. Dr. José Anchieta Rodrigues at the Materials Engineering Department of The Federal University of São Carlos—São Paulo Brazil.


  1. 1.
    Bray EL. Bauxite and alumina. In: Survey USG, editor. Mineral commodity summaries 2008. Washington: US Geological Survey; 2008. p. 32.Google Scholar
  2. 2.
    Bayer KJ. 1972. German Patent No: 2150677.Google Scholar
  3. 3.
    Hall CM. 1889. US Patent No: 400766.Google Scholar
  4. 4.
    Heroult R. 1886. French Patent No: 175 711.Google Scholar
  5. 5.
    Authier-Martin M, Forté G, Ostap S, See J. The mineralogy of bauxite for producing smelter-grade alumina. JOM. 2001;53:36–40.CrossRefGoogle Scholar
  6. 6.
    Hinda AR, Bhargava SK, Grocott SC. The surface chemistry of Bayer process solids: a review. Colloids Surf A Physicochem Eng Asp. 1999. doi: 10.1016/S0927-7757(98)00798-5.
  7. 7.
    Thakur RS, Saint BR. Utilization of red mud-part I. J Sci Ind Res. 1974;33:403–512.Google Scholar
  8. 8.
    Departamento Nacional de Produção Mineral: Brazilian Mineral data base. 2010. Accessed 30 Mar 2010.
  9. 9.
    Motta Sobrinho MA, Alves MCM, Silva Filho EB. Lama vermelha da indústria de beneficiamento de alumina: produção, características, disposição e aplicações alternativas. Revista Matér. 2007;12:322–38.Google Scholar
  10. 10.
    Glenister D, Smirk D, Piskersgil G. Bauxite residue-development of a resource. In: Proceedings of the international bauxite tailings workshop, Perth, Western Australia; 1992. p. 301–8.Google Scholar
  11. 11.
    Paranguru RK, Rath PC, Misra VN. Trends in red mud utilization—a review. Min Process Extr Metall Rev. 2005. doi: 10.1080/08827500490477603.
  12. 12.
    Associação Brasileira de Normas Técnicas—ABNT. NBR 10004: Resíduos sólidos—Classificação, Rio de Janeiro 2004.Google Scholar
  13. 13.
    Tauber E, Hill RK, Crook DN, Murray MJ. Red mud residues from alumina production as raw material for heavy clay products. J Aust Ceram Soc. 1971;7:12–7.Google Scholar
  14. 14.
    Knight JC, Wagh AS, Reid WA. The mechanical properties of ceramics from bauxite waste. J Mater Sci. 1986. doi: 10.1007/BF00547967.
  15. 15.
    Moya JS, Morales F, Garcia AV. Utilizacion cerámica de los barros rojos de las plantas de alumina. Bol Soc Esp Cerám Vidr. 1987;26:21–9.Google Scholar
  16. 16.
    Morales F, Moya JS, De Aza SP. Obtención de ladrillos densos a partir de Barros Rojos, subproducto de las plantas de alúmina. In: Actas II del VIII Congreso-Exposición Argentino y II Iberoamericano de Cerámica, Vidrio y Refractarios, Buenos Aires; 1988. p. 117.Google Scholar
  17. 17.
    Pinnock WR, Gordon JN. Assessment of strength development in Bayer-process residues. J Mater Sci. 1992. doi: 10.1007/BF02403881.
  18. 18.
    De La Gandara JLO, Alvarez P. La magnetita en la fabricación de ladrillos para la acumulación de calor. Rev Metal. 1994;30:135–44.Google Scholar
  19. 19.
    Gordon JN, Pinnock WR, Moore MM. A preliminary investigation of strength development in Jamaican red mud composites. Cem Conc Comp. 1996. doi: 10.1016/S0958-9465(96)00027-3.
  20. 20.
    Rodriguez GAP, Rivera FG, De Aza SP. Obtención industrial de materiales cerámicos a partir de lodos rojos del proceso Bayer. Bol Soc Esp Cerám Vidr. 1999;38:220–6.Google Scholar
  21. 21.
    Sglavo VM, Campostrini R, Maurina S, Carturan G, Monagheddu M, Budroni G, Cocco G. Bauxite ‘red mud’ in the ceramic industry. Part 1: thermal behavior. J Eur Ceram Soc. 2000. doi: 10.1016/S0955-2219(99)00088-6.
  22. 22.
    Sglavo VM, Maurina S, Conci A, Salviati A, Carturan G, Cocco G. Bauxite ‘red mud’ in the ceramic industry. Part 2: production of clay-based ceramics. J Eur Ceram Soc. 2000. doi: 10.1016/S0955-2219(99)00156-9.
  23. 23.
    Alp A, Goral MS. The influence of soda additive on the thermal properties of red mud. J Therm Anal Calorim. 2003. doi: 10.1023/A:102519792767.
  24. 24.
    Atasoy A. The comparison of the Bayer process waste on the base of chemical and physical properties. J Therm Anal Calorim. 2007. doi:  10.1007/s10973-005-7671-y.
  25. 25.
    Pascual J, Corpas FA, López-Beceiro J, Benítez-Guerrero M, Artiaga R. Thermal characterization of Spanish Red Mud. J Therm Anal Cal. 2009. doi:  10.1007/s10973-008-9230-9.
  26. 26.
    Palmer SJ, Frost RL. Thermal decomposition of Bayer precipitates formed at varying temperatures J Therm Anal Cal. 2010. doi: 10.1007/s10973-009-0136-y.
  27. 27.
    Palmer SJ, Frost RL. Characterisation of bauxite and seawater neutralised bauxite residue using XRD and vibrational spectroscopic techniques. J Mater Sci. 2009. doi: 10.1007/s10853-008-3123-y.
  28. 28.
    Rodríguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys B Condens Matter. 1993. doi: 10.1016/0921-4526(93)90108-I.
  29. 29.
    Smith P. The processing of high silica bauxites—review of existing and potential processes. Hydrometallurgy. 2009. doi: 10.1016/j.hydromet.2009.04.015.
  30. 30.
    Snars K, Gilkes RJ. Evaluation of bauxite residues (red muds) of different origins for environmental applications. Appl Clay Sci. 2009. doi: 10.1016/j.clay.2009.06.014.
  31. 31.
    Mackenzie RC. The differential thermal investigation of clays. London: Mineralogical Society; 1957. v. 1, cap. 12, 329–363.Google Scholar
  32. 32.
    Wefers K, Misra C. Oxides and hydroxides of aluminum. Pensilvania, USA: ALCOA, Laboratories; 1987. p. 20.Google Scholar
  33. 33.
    Ingram-Jones VJ, Slade RCT, Davies TW, Southern JC, Salvador S. Dehydroxylation sequences of gibbsite and boehmite: study of differences between soak and flash calcination and of particle-size effects. J Mater Chem. 1996. doi: 10.1039/JM9960600073.
  34. 34.
    Rivas Mercury JM, De Aza AH, Turrillas X, Sheptyakov D, Pena, P. On the decomposition of synthetic Gibbsite studied by neutron thermodiffractometry. J Am Ceram Soc. 2006. doi: 10.1111/j.1551-2916.2006.01191.x.
  35. 35.
    Derie R, Ghodsiand M, Calvo-Roche C. DTA study of the dehydration of synthetic goethite α-FeOOH. J Therm Anal Cal. 1976. doi: 10.1007/BF01909409.
  36. 36.
    Šubrt J, Balek V, Criado JM, Pérez-Maqueda LA, Večerniková E. Characterisation of α-FeOOH grinding products using simultaneous DTA and TG/DTG coupled with MS. J Therm Anal Cal. 1998. doi: 10.1023/A:1010197510542.
  37. 37.
    Laskoul M, Margomenou-Leonidopoulou G, Balek V. Thermal characterization of bauxite samples. J Therm Anal Cal. 2006. doi: 10.1007/s10973-005-7126-5.
  38. 38.
    Alp A, Goral MS. The influence of soda additive on the thermal properties of red mud. J Therm Anal Cal. 2003. doi: 10.1023/A:1025197927673.
  39. 39.
    Atasoy A. An investigation on the characterization and thermal analysis of the Aughinish red mud. J Therm Anal Cal. 2005. doi: 10.1007/s10973-005-6419-z.
  40. 40.
    Todor DN. Thermal of mineral analysis. 1st ed. Bucharest: Abacus Press; 1976.Google Scholar
  41. 41.
    Bown WE, Dollimore D, Galvey AK. Reactions in the solid state: chemical kinetics, vol. 22, New York: Elsevier; 1980.Google Scholar
  42. 42.
    Whittington B, Ilievski D. Determination of the gibbsite dehydration reaction pathway at conditions relevant to Bayer refineries. Chem Eng J. 2004. doi: 10.1016/S1385-8947(03)00207-9.
  43. 43.
    Gan BK, Madsen IC, Hockridge JG. In situ X-ray diffraction of the transformation of gibbsite to alumina through calcination: effect of particle size and heating rate. J Appl Cryst. 2009. doi: 10.1107/S0021889809021232.
  44. 44.
    Mitov I, Paneva D, Kunev B. Comparative study of the thermal decomposition of iron oxyhydroxides. Thermochim Acta. 2002. doi: 10.1016/S0040-6031(01)00808-5.
  45. 45.
    Armstrong JA, Dann SE. Investigation of zeolite scales formed in the Bayer process. Microporous Mesoporous Mater. 2000. doi: 10.1016/S1387-1811(00)00276-6.
  46. 46.
    Borchert W, Keidel J. Reactivity of silicates at low temperatures: I. Heildelberg Beitr Mineral Petrogr. 1947;1:12–6.Google Scholar
  47. 47.
    Mead PJ, Weller MT. Synthesis, structure, and characterization of halate sodalites: M 8[AlSiO4]6(XO3)x(OH)2−x; M = Na, Li, or K; X = Cl, Br, or I. Zeolites. 1995. doi: 10.1016/0144-2449(95)00004-P.
  48. 48.
    Felsche J, Luger S. Phases and thermal decomposition characteristics of hydro-sodalites Na6+x,[AlSiO4]6,(OH)x·nH2O. Thermochim Acta. 1987. doi: 10.1016/0040-6031(87)80069-2.
  49. 49.
    Schipper DJ, Lathouwers TJ, Van Doorn CZ. Thermal decomposition of sodalites. J Am Ceram Soc. 1973. doi: 10.1111/j.1151-2916.1973.tb12402.x.

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • J. M. Rivas Mercury
    • 1
    Email author
  • A. A. Cabral
    • 1
  • A. E. M. Paiva
    • 1
  • R. S. Angélica
    • 2
  • R. F. Neves
    • 2
  • T. Scheller
    • 2
  1. 1.Federal Institute of Education Science and Technology of Maranhão—IFMASao LuisBrazil
  2. 2.Geoscience Institute—IGCFederal University of Para (UFPA)BelemBrazil

Personalised recommendations