Journal of Thermal Analysis and Calorimetry

, Volume 104, Issue 2, pp 569–576 | Cite as

Thermal behavior of Mullite–Zirconia–Zircon composites. Influence of Zirconia phase transformation

  • N. M. Rendtorff
  • L. B. Garrido
  • E. F. Aglietti


Mullite–Zirconia–Zircon composites have proved to be suitable for high-temperature structural applications, with good mechanical and fracture properties and good thermal shock resistance. In this paper, the special dilatometric behavior of a series of Mullite–Zirconia–Zircon (3–40 vol.% ZrO2) composites is evaluated and compared with that of a pure Zircon material and explained in terms of the high Zirconia linear thermal expansion coefficient (α) and Zirconia martensitic transformation. Linear thermal expansion (α) up to 1273 K is studied and correlated with the phase composition of the composites; a linear correlation was found with the m-ZrO2 content evaluated with the Rietveld method. Zirconia (m-ZrO2) dispersed grains containing ceramics material showed a hysteresis in a reversible dilatometric curve (DC). The martensitic transformation temperatures could be evaluated and then compared with the endothermic and exothermic peaks temperatures obtained from the differential thermal analysis (DTA). Furthermore, the hysteresis area was correlated with m-ZrO2 content, where composites with less than 10 vol.% ZrO2 did not show this behavior, and from this content up to 40 vol.% of ZrO2 a linear increase of the hysteresis area was found.


Ceramic materials Composite materials Zirconia  Martensitic transformation Dilatometry 


  1. 1.
    Torrecillas R, Moya JS, De Aza S, Gros H, Fantozzi G. Microstructure and mechanical properties of mullite–zirconia reaction-sintered composites. Acta Metallurgica. 1993;41(6):1647–52.CrossRefGoogle Scholar
  2. 2.
    Lathabai S, Hay DG, Wagner F, Claussen N. Reaction-bonded mullite/zirconia composites. J Am Ceram Soc. 1996;79(1):248–56.CrossRefGoogle Scholar
  3. 3.
    Hamidouche M, Bouaouadja N, Osmani H, Torrecillias R, Fantozzi G. Thermomechanical behavior of Mullite–Zirconia composite. J Eur Ceramic Soc. 1996;16(4):441–5.CrossRefGoogle Scholar
  4. 4.
    Jang B-K. Microstructure of nano SiC dispersed Al2O3–ZrO2 composites. Mater Chem Phys. 2005;93(2-3):337–41.CrossRefGoogle Scholar
  5. 5.
    Hirvonen A, Nowak R, Yamamoto Y, Sekino T, Niihara K. Fabrication, structure, mechanical and thermal properties of zirconia-based ceramic nanocomposites. J Eur Ceramic Soc. 2006;26(8):1497–505.CrossRefGoogle Scholar
  6. 6.
    Sarkar D, Adak S, Mitra NK. Preparation and characterization of an Al2O3–ZrO2 nanocomposite, Part I: Powder synthesis and transformation behavior during fracture. Compos Part A Appl Sci Manuf. 2007;38(1):124–31.CrossRefGoogle Scholar
  7. 7.
    Yugeswaran S, Selvarajan V, Dhanasekaran P, Lusvarghi L. Transferred arc plasma processing of mullite–zirconia composite from natural bauxite and zircon sand. Vacuum. 2008;83(2):353–9.CrossRefGoogle Scholar
  8. 8.
    Rendtorff N, Garrido L, Aglietti E. Thermal shock behavior of dense Mullite–Zirconia composites obtained by two processing routes. Ceram Int. 2008;34(8):2017–24.CrossRefGoogle Scholar
  9. 9.
    Belhouchet H, Hamidouche M, Bouaouadja N, Garnier V, Fantozzi G. Elaboration and characterization of mullite–zirconia composites from gibbsite, boehmite and zircon. Ceramics Silicaty. 2009;53(3):205–10.Google Scholar
  10. 10.
    Ibarra Castro MN, Almanza Robles JM, Cortes Hernández DA, Escobedo Bocardo JC, Torres Torres J. Development of mullite/zirconia composites from a mixture of aluminum dross and zircon. Ceram Int. 2009;35(2):921–4.CrossRefGoogle Scholar
  11. 11.
    Mecif A, Soro J, Harabi A, Bonnet JP. Preparation of mullite- and zircon-based ceramics using kaolinite and zirconium oxide: a sintering study. J Am Ceram Soc. 2010;93(5):1306–12.Google Scholar
  12. 12.
    Chockalingam S, Traver HK. Microwave sintering of β-SiAlON-ZrO2 composites. Mater Des. 2010;31(8):3641–6.CrossRefGoogle Scholar
  13. 13.
    Tür YK, Sünbül AE, Yilmaz H, Duran C. Effect of mullite grains orientation on toughness of mullite/zirconia composites. Ceram Trans. 2010;210:273–8.Google Scholar
  14. 14.
    Curran DJ, Fleming TJ, Towler MR, Hampshire S. Mechanical properties of hydroxyapatite–zirconia compacts sintered by two different sintering methods. J Mater Sci Mater Med. 2010;21(4):1109–20.CrossRefGoogle Scholar
  15. 15.
    Ma W, Wen L, Guan R, Sun X, Li X. Sintering densification, microstructure and transformation behavior of Al2O3/ZrO2(Y2O3) composites. 3rd International Conference on Spray Deposition and Melt Atomization (SDMA 2006) and the 6th International Conference on Spray Forming (ICSF VI). Mater Sci Eng A. 2008;477(1–2):100–106.Google Scholar
  16. 16.
    Sahnoune F, Saheb N, Chegaar M, Goeuriot P. Microstructure and sintering behavior of mullite–zirconia composites. Mater Sci Forum. 2010;638–642:979–84.CrossRefGoogle Scholar
  17. 17.
    Calderon-Moreno JM, Yoshimura M. Al2O3–Y3AlO12(YAG)-ZrO2 ternary composite rapidly solidified from the eutectic melt. J Eur Ceram Soc. 2005;25(8 Spec. Iss.):1365–8.CrossRefGoogle Scholar
  18. 18.
    Hamidouche M, Bouaouadja N, Torrecillas R, Fantozzi G. Thermomechanical behavior of a Zircon–Mullite composite. Ceram Int. 2007;33(4):655–62.CrossRefGoogle Scholar
  19. 19.
    Naglieri V, Palmero P, Montanaro L. Preparation and characterization of alumina-doped powders for the design of multi-phasic nano-microcomposites. J Therm Anal Calorim. 2009;97(1):231–7.CrossRefGoogle Scholar
  20. 20.
    Shevchenko AV, Dudnik EV, Ruban AK, Redko VP, Lopato LM. Sintering of self-reinforced ceramics in the ZrO2–Y2O3–CeO2–Al2O3 system. Powder Metall Metal Ceram. 2010;49(1-2):42–9.CrossRefGoogle Scholar
  21. 21.
    Malek O, Vleugels J, Perez Y, De Baets P, Liu J, Van den Berghe S, Lauwers B. Electrical discharge machining of ZrO2 toughened WC composites. Mater Chem Phys. 2010;123(1):114–20.CrossRefGoogle Scholar
  22. 22.
    Sarkar SK, Lee BT. Evaluation and comparison of the microstructure and mechanical properties of fibrous Al2O3-(m-ZrO2)/t-ZrO2 composites after multiple extrusion steps. Ceram Int. 2010;36(6):1971–6.CrossRefGoogle Scholar
  23. 23.
    Pan C, Zhang L, Zhao Z, Qu Z, Yang Q, Huang X. Changes in microstructures and properties of Al2O3/ZrO2(Y2O3) with different content of ZrO2. Adv Mater Res. 2010;105–106(1):1–4.CrossRefGoogle Scholar
  24. 24.
    Rendtorff N, Garrido L, Aglietti E. Mullite–Zirconia–Zircon composites: properties and thermal shock resistance. Ceram Int. 2009;35(2):779–86.CrossRefGoogle Scholar
  25. 25.
    Rendtorff N, Garrido L, Aglietti E. Zirconia toughening of Mullite–Zirconia–Zircon composites obtained by direct sintering. Ceram Int. 2010;36(2):781–8.CrossRefGoogle Scholar
  26. 26.
    Zender H, Leistner H, Searle H. ZrO2 Materials for applications in the Ceramic Industry. Interceram. 1990;39(6):33–6.Google Scholar
  27. 27.
    Kelly P, Rose LF. The martensitic transformation in ceramics-its role in transformation toughening. Prog Mater Sci. 2002;47:463–557.CrossRefGoogle Scholar
  28. 28.
    Wang C, Zinkevich M, Aldinger F. The Zirconia–Hafnia system: DTA measurements and thermodynamic calculations. J Am Ceram Soc. 2006;89(12):3751–8.CrossRefGoogle Scholar
  29. 29.
    Luo X, Zhou W, Ushakov SV, Navrotsky A, Demkov AA. Monoclinic to tetragonal transformations in hafnia and zirconia: a combined calorimetric and density functional study. Phys Rev B Condens Matter Mater Phys. 2009;80(13), 134119.Google Scholar
  30. 30.
    Wang C, Zinkevich M, Aldinger F. On the thermodynamic modeling of the Zr–O system. Calphad. 2004;28(3):281–92.CrossRefGoogle Scholar
  31. 31.
    Chevalier J, Gremillard L, Virkar AV, Clarke DR. The tetragonal–monoclinic transformation in zirconia: lessons learned and future trends. J Am Ceram Soc. 2009;92(9):1901–20.CrossRefGoogle Scholar
  32. 32.
    Moriya Y, Navrotsky A. High-temperature calorimetry of zirconia: heat capacity and thermodynamics of the monoclinic–tetragonal phase transition. J Chem Thermodyn. 2006;38(3):211–23.CrossRefGoogle Scholar
  33. 33.
    Skovgaard M, Ahniyaz A, Sørensen BF, Almdal K, van Lelieveld A. Effect of microscale shear stresses on the martensitic phase transformation of nanocrystalline tetragonal zirconia powders. J Eur Ceram Soc. 2010;30:2749–55.CrossRefGoogle Scholar
  34. 34.
    Ownby PD, Burt DD, Stewart DV. Experimental study of the thermal expansion of yttria stabilized Zirconia ceramics. Thermochim Acta. 1991;190(1):39–42.CrossRefGoogle Scholar
  35. 35.
    Kingery WD. Factors affecting thermal stress resistance of ceramic materials. J Am Ceram Soc. 1955;38(1):3–15.CrossRefGoogle Scholar
  36. 36.
    Hasselman DPH. Elastic energy and surface energy as design criteria of thermal shock. J Am Ceram Soc. 1963;46(11):535–40.CrossRefGoogle Scholar
  37. 37.
    Hasselman DPH. Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics. J Am Ceram Soc. 1969;52:600–4.CrossRefGoogle Scholar
  38. 38.
    Hasselman DPH. Thermal stress resistance parameters of brittle refractory ceramics: a compendium. Am Ceram Soc Bull. 1970;49(12):1033–7.Google Scholar
  39. 39.
    Miyazaki H. The effect of TiO2 additives on the structural stability and thermal properties of yttria fully-stabilized zirconia. J Therm Anal Calorim. 2009;98(2):343–6.CrossRefGoogle Scholar
  40. 40.
    Szirtes L, Megyeri J, Kuzmann E. Thermal behaviour of transition- and tetravalent-metal oxides and phosphorous oxide composites. J Therm Anal Calorim. 2008;92(2):649–53.CrossRefGoogle Scholar
  41. 41.
    Kyaw T, Okamoto Y, Hayashi K. Microstructures and mechanical properties of Mullite-(yttria, magnesia- and ceria-stabilized) Zirconia composites. J Mater Sci. 1997;32(20):5497–503.CrossRefGoogle Scholar
  42. 42.
    Ruh R, Mazdiyasni KS, Mendiratta M. Mechanical and microstructural characterization of mullite and mullite-SiC-whisker and ZrO2-toughened-mullite—SiC-whisker composites. J Am Ceram Soc. 1988;71(6):503–12.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • N. M. Rendtorff
    • 1
    • 2
    • 3
  • L. B. Garrido
    • 1
    • 4
  • E. F. Aglietti
    • 1
    • 2
    • 4
  1. 1.Centro de Tecnología de Recursos Minerales y Cerámica (CETMIC): (CIC-CONICET-CCT La Plata)Buenos AiresArgentina
  2. 2.Facultad de Ciencias ExactasUniversidad Nacional de La Plata, UNLPBuenos AiresArgentina
  3. 3.CIC-PBABuenos AiresArgentina
  4. 4.CONICETBuenos AiresArgentina

Personalised recommendations