Journal of Thermal Analysis and Calorimetry

, Volume 103, Issue 2, pp 453–458 | Cite as

Computer-aided cooling curve thermal analysis used to predict the quality of aluminum alloys

  • M. MalekanEmail author
  • S. G. Shabestari


In this research, the effects of Al–5Ti–1B grain refiner and Al–10Sr modifier were studied on solidification characteristics and microstructural features of 319 aluminum alloy. Important solidification events such as recalescence and nucleation undercooling temperature and aluminum–silicon eutectic depression temperature have been evaluated using cooling curve and its first derivative curve obtained from thermal analysis of a sample. The aim of this article is to show the ability of the thermal analysis technique to predict some key parameters controlling solidification and casting process. It has been found that the thermal analysis is the identified method for a rapid on-line monitoring of metallurgical characteristics of aluminum alloy melts without conventional metallographic examination.


Solidification Grain refinement Silicon modification Thermal analysis Quality control testing 


  1. 1.
    Gruzleski JE, Closset BM. The treatment of liquid aluminum–silicon alloys. Illinois, USA: AFS. Inc. Des Plaines; 1990.Google Scholar
  2. 2.
    Closset B, Pirie K, Gruzleski JE. Comparison of thermal analysis and electrical resistivity in microstructure evaluation of Al–Si foundry alloys. AFS Trans. 1984;92:123–33.Google Scholar
  3. 3.
    Yen CM, Evans WJ, Nowicki RM, Cole GS. Measuring the quality of aluminum casting alloys with microprocessor-aided thermal analysis. AFS Trans. 1985;93:199–204.Google Scholar
  4. 4.
    Apelian D, Sigworth GK, Whaler KR. Assessment of grain refinement and modification of Al–Si foundry alloys by thermal analysis. AFS Trans. 1984;92:297–307.Google Scholar
  5. 5.
    Charbonnier J. Microprocessor assisted thermal analysis testing of aluminum alloy structures. AFS Trans. 1984;92:907–22.Google Scholar
  6. 6.
    Argyropoulos S, Closset B, Gruzleski JE. Application of microprocessors in metal casting studies. AFS Trans. 1983;91:515–22.Google Scholar
  7. 7.
    Backerud L, Chai G, Tamminen J. Foundry alloys. In: Solidification characteristics of aluminum alloys, vol 2. Stockholm, Sweden: AFS/Skanaluminium; 1990.Google Scholar
  8. 8.
    Samuel AM, Ouellet P, Samuel FH, Doty HW. Microstructural interpretation of thermal analysis of commercial 319 Al alloy with Mg and Sr additions. AFS Trans. 1997;105:951–62.Google Scholar
  9. 9.
    Barlow JO, Stefanescu DM. Computer-aided cooling curve analysis revisited. AFS Trans. 1997;105:349–54.Google Scholar
  10. 10.
    Upadhya KG, Stefanescu DM, Lieu K, Yeager DP. Computer-aided cooling curve analysis: principles and applications in metal casting. AFS Trans. 1989;97:61–6.Google Scholar
  11. 11.
    Mackay RI, Djurdjevic MB, Sokolowski JH. Effect of cooling rate on fraction solid of metallurgical reactions in 319 alloy. AFS Trans. 2000;108:521–30.Google Scholar
  12. 12.
    Arnberg L, Backerud L, Chai G. Dendrite coherency. In: Solidification characteristics of aluminum alloys, vol 3. Des Plaines, IL: AFS; 1996.Google Scholar
  13. 13.
    Shabestari SG, Malekan M. Thermal analysis study of the effect of cooling rate on the microstructure and solidification parameters of 319 aluminum alloy. Can Met Q. 2005;44:305–12.Google Scholar
  14. 14.
    Argyropoulos S, Closset B, Gruzleski JE, Oger H. The quantitative control of modification in Al–Si foundry alloys using a thermal analysis technique. AFS Trans. 1983;91:351–8.Google Scholar
  15. 15.
    Chen X, Geng H, Li Y. Study on the eutectic modification level of Al–7Si alloy by computer aided recognition of thermal analysis cooling curves. Mater Sci Eng A. 2006;419:283–9.CrossRefGoogle Scholar
  16. 16.
    Mackay RI, Djurdjevic MB, Jiang H, Sokolwski JH, Evans WJ. Determination of eutectic Si particle modification via a new thermal analysis interpretive method in 319 alloy. AFS Trans. 2000;108:511–20.Google Scholar
  17. 17.
    Shabestari SG, Ghodrat S. Thermal analysis and microstructural evaluation of intermetallic compounds formed during pre-and post-eutectic reactions in 319 aluminum alloy. Can Met Q. 2005;45:207–14.Google Scholar
  18. 18.
    Shabestari SG, Ghodrat S. Assessment of modification and formation of intermetallic compounds in aluminum alloy using thermal analysis. Mater Sci Eng A. 2007;467:150–8.CrossRefGoogle Scholar
  19. 19.
    Dobrza′nski LA, Maniara R, Sokołowski J, Kasprzak W. Effect of cooling rate on the solidification behavior of AC AlSi7Cu2 alloy. J Mater Process Technol. 2007;191:317–20.CrossRefGoogle Scholar
  20. 20.
    Emadi D, Whiting LV, Nafisi S, Ghomashchi R. Applications of thermal analysis in quality control of solidification processes. J Therm Anal Calorim. 2005;81:235–42.CrossRefGoogle Scholar
  21. 21.
    Mahfoud M, Prasada Rao AK, Emadi D. The role of thermal analysis in detecting impurity levels during aluminum recycling. J Therm Anal Calorim. 2010;100:847–51.CrossRefGoogle Scholar
  22. 22.
    Dedavid BA, Costa EM, Ferreira CRF. A study of precipitates formation in AA 380.0 aluminum alloys modified by the addition of magnesium. J Therm Anal Calorim. 2002;67:473–80.CrossRefGoogle Scholar
  23. 23.
    Djurdjevic M, Jiang H, Sokolowski J. On-line prediction of aluminum–silicon eutectic modification level using thermal analysis. Mater Charact. 2001;46:31–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  1. 1.Center of Excellence for Advanced Materials and Processing (CEAMP), School of Materials and Metallurgical EngineeringIran University of Science and Technology (IUST)TehranIran

Personalised recommendations