Journal of Thermal Analysis and Calorimetry

, Volume 104, Issue 2, pp 707–716 | Cite as

Thermal and microstructural analysis of Cu(II) 2,2′-dihydroxy azobenzene and thin films deposition by MAPLE technique

  • C. Constantinescu
  • E. Morîntale
  • Ana Emandi
  • Maria Dinescu
  • P. Rotaru


A newly synthesized copper-complex exhibiting nonlinear optical properties, crystalline nature, and generating interest as a material for non-linear optical applications was investigated. As thermal stability studies are indispensable before attempting any laser-assisted processing experiments, the thermal behavior of 2,2′-dihydroxy azobenzene with Cu2+ cations that are found to organize themselves as non-central symmetric crystallites, was investigated. The thin films were deposited on silicon substrates by matrix-assisted pulsed laser evaporation using a Nd:YAG laser working at 266 and 355 nm. Thermal analysis of the bulk compound indicates a higher thermal stability in argon flow when compared to the air atmosphere; as well, since, the adhesion of the compound onto the substrate enhances the bonding, the thermal stability of the Cu complex increases. Fourier transform infrared spectroscopy, atomic force microscopy, scanning electron microscopy, spectroscopic ellipsometry, and ultraviolet–visible spectroscopy investigations were also performed.


Cu complex MAPLE Thermal analysis Thin film 


  1. 1.
    Qiu FX, Zhang W, Yang DG, Zhao MJ, Cao GR, Li PP. Synthesis, characterization, and thermo-optical properties of azobenzene polyurethane containing chiral units. J Appl Polym Sci. 2010;115:146–51.CrossRefGoogle Scholar
  2. 2.
    Chiarelli PA, Liu DG, Watkins EB, Trouw FR, Majewski J, Casson JL, Tang ZX, Johal MS, Robinson JM, Wang HL. Molecular order in Langmuir–Blodgett assembled films of an azobenzene amphiphile. Thin Solid Films. 2009;517:4638–43.CrossRefGoogle Scholar
  3. 3.
    Nishihara H. Combination of redox- and photochemistry of azo-conjugated metal complexes. Coord Chem Rev. 2005;249:1468–75.CrossRefGoogle Scholar
  4. 4.
    Constantinescu C, Emandi A, Vasiliu C, Negrila C, Logofatu C, Cotarlan C, Lazarescu M. Thin films of Cu(II)-o,o′-dihydroxy azobenzene nanoparticle-embedded polyacrylic acid (PAA) for nonlinear optical applications developed by matrix assisted pulsed laser evaporation (MAPLE). Appl Surf Sci. 2009;255:5480–5.CrossRefGoogle Scholar
  5. 5.
    Eason RW. Pulsed laser deposition of thin films. New York: Wiley; 2007.Google Scholar
  6. 6.
    Rau H. Photoisomerization of azobenzenes. Photoreactive organic thin films. San Diego: Academic Press; 2002.Google Scholar
  7. 7.
    Lippert T, Dickinson J. Chemical and spectroscopic aspects of polymer ablation: special features and novel directions. Chem Rev. 2003;103:453–85.CrossRefGoogle Scholar
  8. 8.
    Sudesh Kumar G, Neckers D. Photochemistry of azobenzene-containing polymers. Chem Rev. 1989;89:1915–25.CrossRefGoogle Scholar
  9. 9.
    Xie S, Natansohn A, Rochon P. Recent developments in aromatic azo polymers research. Chem Mater. 1993;5:403–11.CrossRefGoogle Scholar
  10. 10.
    Rusu E, Dorohoi D, Airinei A. Solvatochromic effects in the absorption spectra of some azobenzene compounds. J Mol Struct. 2008;887:216–9.CrossRefGoogle Scholar
  11. 11.
    McGill RA, Chung R, Chrisey DB, Dorsey PC, Matthews P, Pique A, Mlsna TE, Stepnowski JL. Performance optimization of surface acoustic wave chemical sensors. IEEE Trans Ultrason Ferroelectr Freq Control. 1998;45:1370–80.CrossRefGoogle Scholar
  12. 12.
    Pique A, McGill RA, Chrisey DB, Leonhardt D, Mlsna TE, Spargo BJ, Callahan JH, Vachet RW, Chung R, Bucaro MA. Growth of organic thin films by the matrix assisted pulsed laser evaporation (MAPLE) technique. Thin Solid Films. 1999;355–356:536–41.CrossRefGoogle Scholar
  13. 13.
    Chrisey DB, Pique A, McGill RA, Horwitz JS, Ringeisen BR, Bubb DM, Wu K. Laser deposition of polymer and biomaterial films. Chem Rev. 2003;103:553–76.CrossRefGoogle Scholar
  14. 14.
    Leveugle E, Zhigilei LV, Sellinger A, Fitz-Gerald JM. Computational and experimental study of the cluster size distribution in MAPLE. Appl Surf Sci. 2007;253:6456–60.CrossRefGoogle Scholar
  15. 15.
    Houser E, Chrisey D, Bercu M, Scarisoreanu N, Purice A, Colceag D, Constantinescu C, Moldovan A, Dinescu M. Functionalized polysiloxane thin films deposited by MAPLE for advanced chemical sensor applications. Appl Surf Sci. 2006;252:4871–6.CrossRefGoogle Scholar
  16. 16.
    Constantinescu C, Scarisoreanu N, Moldovan A, Dinescu M, Vasiliu C. Thin films of polyaniline deposited by MAPLE technique. Appl Surf Sci. 2007;253:7711–4.CrossRefGoogle Scholar
  17. 17.
    Rotaru A, Constantinescu C, Rotaru P, Moanta A, Dumitru M, Socaciu M, Dinescu M, Segal E. Thermal analysis and thin film deposition by MAPLE of a 4CN type azomonoether. J Therm Anal Calorim. 2008;92:279–84.CrossRefGoogle Scholar
  18. 18.
    Lippert T, Chrisey D, Purice A, Constantinescu C, Filipescu M, Scarisoreanu N, Dinescu M. Laser processing of soft materials. Rom Rep Phys. 2007;59:483–98.Google Scholar
  19. 19.
    Bigi A, Boanini E, Capuccini C, Fini M, Mihailescu I, Ristoscu C, Sima F, Torricelli P. Biofunctional alendronate–Hydroxyapatite thin films deposited by matrix assisted pulsed laser evaporation. Biomaterials. 2009;30:6168–77.CrossRefGoogle Scholar
  20. 20.
    Frycek R, Jelinek M, Kocourek T, Fitl P, Vrnata M, Myslik V, Vrbova M. Thin organic layers prepared by MAPLE for gas sensor application. Thin Solid Films. 2006;495:308–11.CrossRefGoogle Scholar
  21. 21.
    Kopecky D, Vrnata M, Vyslouzil F, Myslik V, Fitl P, Ekrt O, Matejka P, Jelinek M, Kocourek T. Polypyrrole thin films for gas sensors prepared by matrix-assisted pulsed laser evaporation technology: effect of deposition parameters on material properties. Thin Solid Films. 2009;517:2083–7.CrossRefGoogle Scholar
  22. 22.
    Constantinescu C, Palla-Papavlu A, Rotaru A, Florian P, Chelu F, Icriverzi M, Nedelcea A, Dinca V, Roseanu A, Dinescu M. Multifunctional thin films of lactoferrin for biochemical use deposited by MAPLE technique. Appl Surf Sci. 2009;255:5491–5.CrossRefGoogle Scholar
  23. 23.
    Rotaru A, Kropidłowska A, Constantinescu C, Scarisoreanu N, Dumitru M, Strankowski M, Rotaru P, Ion V, Vasiliu C, Becker B, Dinescu M. CdS thin films obtained by thermal treatment of Cadmium (II) complex precursor deposited by MAPLE technique. Appl Surf Sci. 2009;255:6786–9.CrossRefGoogle Scholar
  24. 24.
    Rotaru A, Constantinescu C, Mandruleanu A, Rotaru P, Moldovan A, Gyoryova K, Dinescu M, Balek V. Matrix assisted pulsed laser evaporation of zinc benzoate for ZnO thin films and non-isothermal decomposition kinetics. Thermochim Acta. 2010;498:81–91.CrossRefGoogle Scholar
  25. 25.
    Rodrigo K, Toftmann B, Schou J, Pedrys R. Laser-induced ion emission during polymer deposition from a flash-frozen water ice matrix. Chem Phys Lett. 2004;399:368–72.CrossRefGoogle Scholar
  26. 26.
    Purice A, Schou J, Kingshott P, Pryds N, Dinescu M. Characterization of lysozyme films produced by matrix assisted pulsed laser evaporation (MAPLE). Appl Surf Sci. 2007;253:6451–5.CrossRefGoogle Scholar
  27. 27.
    Purice A, Schou J, Kingshott P, Dinescu M. Production of active lysozyme films by matrix assisted pulsed laser evaporation at 355 nm. Chem Phys Lett. 2007;435:350–3.CrossRefGoogle Scholar
  28. 28.
    Sellinger A, Leveugle E, Fitz-Gerald JM, Zhigilei LV. Generation of surface features in film deposited by matrix-assisted pulsed laser evaporation: the effects of the stress confinement and droplet landing velocity. Appl Phys A. 2008;92:821–9.CrossRefGoogle Scholar
  29. 29.
    Lucilha AC, Bonancea CE, Barreto WJ, Takashima K. Adsorption of the diazo dye Direct Red 23 onto a zinc oxide surface: a spectroscopic study. Spectrochim Acta A. 2010;75:389–93.CrossRefGoogle Scholar
  30. 30.
    Foletto EL, Jahn SL, Moreira RDPM. Hydrothermal preparation of Zn2SnO4 nanocrystals and photocatalytic degradation of a leather dye. J Appl Electrochem. 2010;40:59–63.CrossRefGoogle Scholar
  31. 31.
    Badea M, Olar R, Cristurean E, Marinescu D, Emandi A, Budrugeac P, Segal E. Thermal stability study of some azo-derivatives and their complexes—Part 2. New azo-derivative pigments and their Cu(II) complexes. J Therm Anal Calorim. 2004;77:815–24.CrossRefGoogle Scholar
  32. 32.
    Olar R, Badea M, Marinescu D, Lazar V, Chifiriuc C. New complexes of Ni(II) and Cu(II) with Schiff bases functionalised with 1,3,4-thiadiazole: spectral, magnetic, biological and thermal characterization. J Therm Anal Calorim. 2009;97:721–7.CrossRefGoogle Scholar
  33. 33.
    El-Tabl AS, Aly FA, Shakdofa MME, Shakdofa AME. Synthesis, characterization, and biological activity of metal complexes of azohydrazone ligand. J Coord Chem. 2010;63:700–12.CrossRefGoogle Scholar
  34. 34.
    Olczak-Kobza M. Synthesis and thermal characterization of zinc(II) di(o-aminobenzoate) complexes of imidazole and its methyl derivatives. Thermochim Acta. 2004;419:67–71.CrossRefGoogle Scholar
  35. 35.
    Haroun MA, Khirstova PK, Gasmelseed GA, Covington AD. Influence of oxazolidines and zirconium oxalate crosslinkers on the hydrothermal, enzymatic, and thermo mechanical stability of type 1 collagen fiber. Thermochim Acta. 2009;484:4–10.CrossRefGoogle Scholar
  36. 36.
    Badea M, Olar R, Marinescu D, Segal E, Rotaru A. Thermal stability of some new complexes bearing ligands with polymerizable groups. J Therm Anal Calorim. 2007;88:317–21.CrossRefGoogle Scholar
  37. 37.
    Olar R, Badea M, Stanica N, Cristurean E, Marinescu D. Synthesis, characterisation and thermal behaviour of some complexes with ligands having 1,3,4-thiadiazole moieties. J Therm Anal Calorim. 2005;82:417–22.CrossRefGoogle Scholar
  38. 38.
    Rotaru A, Bratulescu G, Rotaru P. Thermal analysis of azoic dyes; Part I non-isothermal decomposition kinetics of [4-(4-chlorobenzyloxy)-3-methylphenyl](p-tolyl)diazene in dynamic air atmosphere. Thermochim Acta. 2009;489(1–2):63–9.CrossRefGoogle Scholar
  39. 39.
    Rotaru A, Gosa M, Segal E. Isoconversional linear integral kinetics of the non-isothermal evaporation of 4-[(4-chlorobenzyl)oxy]-4′-trifluoromethyl-azobenzene. Studia Universitas Babeş-Bolyai Chemia. 2009;3:185–92.Google Scholar
  40. 40.
    Rotaru A, Moanta A, Popa G, Rotaru P, Segal E. Thermal decomposition kinetics of some aromatic azomonoethers. Part IV. Non-isothermal kinetics of 2-allyl-4-((4-(4-methylbenzyloxy) phenyl)diazenyl) phenol in dynamic air atmosphere. J Therm Anal Calorim. 2009;97(2):485–91.CrossRefGoogle Scholar
  41. 41.
    Rotaru A, Kropidlowska A, Rotaru P. On the inappropriate fit of diffusion functions at thermal decomposition of some azomonoethers in liquid state. Phys AUC. 2007;17(2):115–8.Google Scholar
  42. 42.
    Gur M, Kocaokutgen H, Tas M. Synthesis, spectral, and thermal characterisations of some azo-ester derivatives containing a 4-acryloyloxy group. Dyes Pigment. 2007;72(1):101–8.CrossRefGoogle Scholar
  43. 43.
    Badea M, Emandi A, Marinescu D, Cristurean E, Olar R, Braileanu A, Budrugeac P, Segal E. Thermal stability of some azo-derivatives and their complexes—1-(2-benzothiazolyl)-3-methyl-4-azo-pyrazil-5-one derivatives and their Cu(II) complexes. J Therm Anal Calorim. 2003;72(2):525–31.CrossRefGoogle Scholar
  44. 44.
    Dincalp H, Toker F, Durucasu J, Avcibasi N, Icli S. New thiophene-based azo ligands containing azo methine group in the main chain for the determination of copper(II) ions. Dyes Pigment. 2007;75(1):11–24.CrossRefGoogle Scholar
  45. 45.
    Chen Z, Wu Y, Gu D, Gan F. Nickel(II) and copper(II) complexes containing 2-(2-(5-substitued isoxazol-3-yl)hydrazono)-5,5-dimethylcyclohexane-1,3-dione ligands: synthesis, spectral and thermal characterizations. Dyes Pigment. 2008;76(3):624–31.CrossRefGoogle Scholar
  46. 46.
    Rotaru A, Moanta A, Salageanu I, Budrugeac P, Segal E. Thermal decomposition kinetics of some aromatic azomonoethers. Part I. Decomposition of 4-[(4-chlorobenzyl)oxy]-4′-nitro-azobenzene. J Therm Anal Calorim. 2007;87(2):395–400.CrossRefGoogle Scholar
  47. 47.
    Rotaru A, Kropidlowska A, Moanta A, Rotaru P, Segal E. Thermal decomposition kinetics of some aromatic azomonoethers. Part II. Non-isothermal study of three liquid crystals in dynamic air atmosphere. J Therm Anal Calorim. 2008;92(1):233–8.CrossRefGoogle Scholar
  48. 48.
    Rotaru A, Moanta A, Rotaru P, Segal E. Thermal decomposition kinetics of some aromatic azomonoethers. Part III. Non-isothermal study of 4-[(4-chlorobenzyl)oxy]-4′-chloro-azobenzene in dynamic air atmosphere. J Therm Anal Calorim. 2009;95(1):161–6.CrossRefGoogle Scholar
  49. 49.
    Barbera J, Giorgini L, Paris F, Salatelli E, Tejedor RM, Angiolini L. Supramolecular chirality and reversible chiroptical switching in new chiral liquid-crystal azopolymers. Chem Eur J. 2008;14(35):11209–21.CrossRefGoogle Scholar
  50. 50.
    Benmouna R, Benyoucef B. Thermophysical and thermomechanical properties of Norland Optical Adhesives and liquid crystal composites. J Appl Polym Sci. 2008;108(6):4072–9.CrossRefGoogle Scholar
  51. 51.
    Chao TY, Chang HL, Su WC, Wu JY, Jeng RJ. Nonlinear optical polyimide/montmorillonite nanocomposites consisting of azobenzene dyes. Dyes Pigment. 2008;77(3):515–24.CrossRefGoogle Scholar
  52. 52.
    Lu M, Cunningham BT, Park SJ, Eden JG. Vertically emitting, dye-doped polymer laser in the green (lambda similar to 536 nm) with a second order distributed feedback grating fabricated by replica molding. Opt Commun. 2008;281(11):3159–62.CrossRefGoogle Scholar
  53. 53.
    Oliveira-Campos AMF, Oliveira MJ, Rodrigues LM, Silva MM, Smith MJ. Thermal analysis of a polymorphic azo dye derived from 2-amino-5-nitrothiazole. Thermochim Acta. 2007;453(1):52–6.CrossRefGoogle Scholar
  54. 54.
    Galikova A, Pola J. Highly sensitive TGA diagnosis of thermal behaviour of laser-deposited materials. Thermochim Acta. 2008;473:54–60.CrossRefGoogle Scholar
  55. 55.
    Emandi A, Jula N, Vasiliu C, Dinescu M, Constantinescu C, Calinescu M, Vasilescu M. Some aspects about the properties of nanostructured organotranzitional Cu(II) complex on a polymeric matrix as optical sensor. In: Proceedings of the international conference on microelectronics and computer Science—ICMCS Sep 19–21, 2007, Chisinau, Republic of Moldova; 2007. p. 84–87.Google Scholar
  56. 56.
    Kropidłowska A, Rotaru A, Strankowski M, Becker B, Segal E. Thermal stability and non-isothermal decomposition kinetics of a heteroleptic cadmium(II) complex, potential precursor for semiconducting CdS layers. J Therm Anal Calorim. 2008;91(3):903–9.CrossRefGoogle Scholar
  57. 57.
    Tătucu M, Rotaru P, Rău I, Spînu C, Kriza A. Thermal behaviour and spectroscopic investigation of some methyl 2-pyridyl ketone complexes. J Therm Anal Calorim. 2010;100(3):1107–14.CrossRefGoogle Scholar
  58. 58.
    Rotaru P, Scorei R, Hărăbor A, Dumitru MD. Thermal analysis of a calcium fructoborate sample. Thermochim Acta. 2010;506(1–2):8–13.CrossRefGoogle Scholar
  59. 59.
    Grundner C, Poiesz K, Redman-Fuery N. Development and use of a TG-DTA-microscope for evaluation of pharmaceutical materials. J Therm Anal Calorim. 2006;85:91–8.CrossRefGoogle Scholar
  60. 60.
    Gusakov A, Voropayev A, Zheludkevich M, Vecher A, Raspopov S. Studies of the interaction of copper with atomic and molecular oxygen. Phys Chem Chem Phys. 1999;5311–14.Google Scholar
  61. 61.
    Du H, Fuh R, Li J, Corkan A, Lindsey J. PhotochemCAD: a computer-aided design and research tool in photochemistry. Photochem Photobiol. 1998;68:141–2.Google Scholar
  62. 62.
    Herzinger C, Johs B, McGahan W, Paulson W, Woollam J. Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation. J Appl Phys. 1998;83:3323.CrossRefGoogle Scholar
  63. 63.
    Ion V, Galca A, Scarisoreanu N, Filipescu M, Dinescu M. Spectroscopic ellipsometry study of amorphous SrxBa1−xNb2O6 thin films obtained by pulsed laser deposition. Phys Stat Sol. 2008;5:1180–3.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • C. Constantinescu
    • 1
  • E. Morîntale
    • 2
  • Ana Emandi
    • 3
  • Maria Dinescu
    • 1
  • P. Rotaru
    • 2
  1. 1.PPAM-Lasers DepartmentINFLPR-National Institute for Laser, Plasma and Radiation PhysicsBucharestRomania
  2. 2.Faculty of PhysicsUniversity of CraiovaCraiovaRomania
  3. 3.Department of Inorganic Chemistry, Faculty of ChemistryUniversity of BucharestBucharestRomania

Personalised recommendations