Journal of Thermal Analysis and Calorimetry

, Volume 103, Issue 2, pp 569–575

Thermal behavior and thermal safety on 3,3-dinitroazetidinium salt of perchloric acid

  • H. X. Ma
  • B. Yan
  • Y. H. Ren
  • Y. Hu
  • Y. L. Guan
  • F. Q. Zhao
  • J. R. Song
  • R. Z. Hu
Article

Abstract

3,3-Dinitroazetidinium (DNAZ) salt of perchloric acid (DNAZ·HClO4) was prepared, it was characterized by the elemental analysis, IR, NMR, and a X-ray diffractometer. The thermal behavior and decomposition reaction kinetics of DNAZ·HClO4 were investigated under a non-isothermal condition by DSC and TG/DTG techniques. The results show that the thermal decomposition process of DNAZ·HClO4 has two mass loss stages. The kinetic model function in differential form, the value of apparent activation energy (Ea) and pre-exponential factor (A) of the exothermic decomposition reaction of DNAZ·HClO4 are f(α) = (1 − α)−1/2, 156.47 kJ mol−1, and 1015.12 s−1, respectively. The critical temperature of thermal explosion is 188.5 °C. The values of ΔS, ΔH, and ΔGof this reaction are 42.26 J mol−1 K−1, 154.44 kJ mol−1, and 135.42 kJ mol−1, respectively. The specific heat capacity of DNAZ·HClO4 was determined with a continuous Cp mode of microcalorimeter. Using the relationship between Cp and T and the thermal decomposition parameters, the time of the thermal decomposition from initiation to thermal explosion (adiabatic time-to-explosion) was evaluated as 14.2 s.

Keywords

3,3-Dinitroazetidine (DNAZ) HClO4 Thermal behavior Thermal safety 

References

  1. 1.
    Frumkin AE, Churakov AM, Strelenko YA, Kachala VV, Tartakkovsky VA. Synthesis of 1,2,3,4-tetrazino[5,6-f]benzo-1,2,3,4-tetrazine 1,3,7,9-tetra-N-oxides. Org Lett. 1999;1:721–4.CrossRefGoogle Scholar
  2. 2.
    Archibald TG, Gilardi R, Baum K, George C. Synthesis and X-ray crystal structure of 1,3,3-trinitroazetidine. J Org Chem. 1990;55:2920–4.CrossRefGoogle Scholar
  3. 3.
    Hiskey MA, Coburn MD, Mitchell MA, Benicewicz BC. Synthesis of 3,3-dinitroazetidine from 1-t-butyl-3,3-dinitroazetidine. J Heterocycl Chem. 1992;29:1855–6.CrossRefGoogle Scholar
  4. 4.
    Hiskey MA, Stincipher MM, Brown JE. Synthesis and initial characterization of some energetic salts of 3,3-dinitroazetidine. J Energy Mater. 1993;11:157–65.CrossRefGoogle Scholar
  5. 5.
    Ma HX, Yan B, Li ZN, Song JR, Hu RZ. Synthesis, molecular structure, non-isothermal decomposition kinetics and adiabatic time to explosion of 3,3-dinitroazetidinium 3,5-dinitrosalicylate. J Therm Anal Calorim. 2009;95:437–44.CrossRefGoogle Scholar
  6. 6.
    Gao R, Ma HX, Yan B, Song JR, Wang YH. Structure–property investigation on TDNAZ·HNO3 and DNAZ·HCl. Chem J Chin U. 2009;30:577–82 (in Chinese).Google Scholar
  7. 7.
    Ma HX, Yan B, Song JR, Lü XQ, Wang LJ. Molecular structure and quantum chemical investigation of acyl derivatives of DNAZ. Chem J Chin U. 2009;30:377–81 (in Chinese).Google Scholar
  8. 8.
    Ma HX, Yan B, Li ZN, Guan YL, Song JR, Xu KZ, Hu RZ. Preparation, non-isothermal decomposition kinetics, heat capacity and adiabatic time-to-explosion of NTO·DNAZ. J Hazard Mater. 2009;169:1068–73.CrossRefGoogle Scholar
  9. 9.
    Li ZN, Ma HX, Yan B, Guan YL, Song JR. Synthesis, crystal structure, theoretical calculation and thermal behavior of DNAZ·NTO. Chin J Chem. 2009;27:2284–90.CrossRefGoogle Scholar
  10. 10.
    Yan B, Ma HX, Hu Y, Guan YL, Song JR. 1-(2,4-Dinitrophenyl)-3,3-dinitroazetidine. Acta Crystallogr E. 2009;65:o3215.CrossRefGoogle Scholar
  11. 11.
    Yan B, Ma HX, Li JF, Guan YL, Song JR. 1-Benzoyl-3,3-dinitroazetidine. Acta Crystallogr E. 2010;66:o57.CrossRefGoogle Scholar
  12. 12.
    Ditmars DA, Ishihara S, Chang SS, Bernstein G. Enthalpy and heat-capacity standard reference material: sapphire (a-Al2O3) from 10 to 2250 K. J Res Natl Bur Stand. 1982;87:159–63.Google Scholar
  13. 13.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  14. 14.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.CrossRefGoogle Scholar
  15. 15.
    Vyazovkin S, Dollimore D. Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids. J Chem Inf Comput Sci. 1996;36:42–5.Google Scholar
  16. 16.
    Hu RZ, Yang ZQ, Liang YJ. The determination of the most probable mechanism function and three kinetic parameters of exothermic decomposition reaction of energetic materials by a single non-isothermal DSC curve. Thermochim Acta. 1988;123:135–51.CrossRefGoogle Scholar
  17. 17.
    Hu RZ, Shi QZ. Thermal analysis kinetics. 2nd ed. Beijing: Science Press; 2001 (in Chinese).Google Scholar
  18. 18.
    Zhang TL, Hu RZ, Xie Y, Li FP. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC. Thermochim Acta. 1994;244:171–6.CrossRefGoogle Scholar
  19. 19.
    Smith LC. An approximate solution of the adiabatic explosion problem. Thermochim Acta. 1975;13:1–6.CrossRefGoogle Scholar
  20. 20.
    Zhao HA, Hu RZ, Wang XJ, Zhao FQ, Gao HX, Zhang H, Zhang XL, Feng Y, Ma HX. Thermal safety of 1,3,3-trinitroazetidine (TNAZ). Acta Chim Sinica. 2009;67:2536–40 (in Chinese).Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • H. X. Ma
    • 1
  • B. Yan
    • 1
    • 2
  • Y. H. Ren
    • 1
  • Y. Hu
    • 1
  • Y. L. Guan
    • 1
  • F. Q. Zhao
    • 3
  • J. R. Song
    • 4
    • 1
  • R. Z. Hu
    • 3
  1. 1.School of Chemical Engineering/Shaanxi Key Laboratory of Physico-Inorganic ChemistryNorthwest UniversityXi’anChina
  2. 2.School of Chemistry and Chemical EngineeringYulin UniversityYulinChina
  3. 3.Xi’an Modern Chemistry Research InstituteXi’anChina
  4. 4.Department of Conservation TechnologyThe Palace MuseumBeijingChina

Personalised recommendations