Journal of Thermal Analysis and Calorimetry

, Volume 102, Issue 1, pp 121–126 | Cite as

A thermogravimetric method for assessing the substantivity of polymer films on dentally relevant substrates

  • Birthe V. Nielsen
  • Thomas G. Nevell
  • Eugen Barbu
  • Gareth D. Rees
  • John Tsibouklis
Article

Abstract

A thermogravimetric (TG) method is described for evaluating the substantivity of multi-functional polymeric materials that may be used as protective coatings for teeth. Applied to poly(butyl methacrylate) and poly(octadecyl methacrylate) film structures deposited onto model tooth surfaces from aqueous latex formulations, the method shows that while the latter polymer exhibits little substantivity, the former may be a suitable candidate material for dental-care applications.

Keywords

Dental care Thermogravimetry Substantivity Tooth coatings 

References

  1. 1.
    Hannig C, Hamkens A, Becker K, Attin R, Attin T. Erosive effects of different acids on bovine enamel: release of calcium and phosphate in vitro. Arch Oral Biol. 2005;50:541–52.CrossRefGoogle Scholar
  2. 2.
    Meurman JH, Rytomaa I, Kari K, Laakso T, Murtomaa H. Salivary pH and glucose after consuming various beverages, including sugar-containing drinks. Caries Res. 1987;21:353–9.CrossRefGoogle Scholar
  3. 3.
    Walters PA. Dentine hypersensitivity: a review. J Contemp Dent Pract. 2005;6(2):107–17.Google Scholar
  4. 4.
    Addy M. Dentine hypersensitivity: definition, prevalence, distribution and aetiology. Tooth wear and sensitivity. In: Addy M, Embery G, Edgar WM, Orchardson R, editors. Clinical advances in restorative dentistry. London: Martin Dunitz; 2000. p. 239–48.Google Scholar
  5. 5.
    Churchley D, Rees GD, Barbu E, Nevell TG, Tsibouklis J. Fluoropolymers as low-surface-energy tooth coatings for oral care. Int J Pharm. 2008;352(1–2):44–9.CrossRefGoogle Scholar
  6. 6.
    Churchley D, Rees GD, Barbu E, Nevell TG, Tsibouklis J. Synthesis and characterization of low surface energy fluoropolymers as potential barrier coatings in oral care. J Biomed Mater Res A. 2008;84A:994–1005.CrossRefGoogle Scholar
  7. 7.
    Derjaguin DV, Landau L. Theory of the stability of strongly charged lyophobic sols and the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochem URSS. 1941;14:633–62.Google Scholar
  8. 8.
    Verwey EJW, Overbeek JTG. Stability of colloids. Theory of the stability of lyophobic colloids. Amsterdam: Elsevier; 1948.Google Scholar
  9. 9.
    Tunney MM, Gorman SP, Patrick S. Infection associated with medical devices. Rev Med Microbiol. 1996;7(4):195–206.Google Scholar
  10. 10.
    Tsibouklis J, Stone M, Thorpe AA, Graham P, Peters V, Heerlien R, Smith JR, Green KL, Nevell TG. Preventing bacterial adhesion onto surfaces: the low-surface-energy approach. Biomaterials. 1999;20(13):1229–35.CrossRefGoogle Scholar
  11. 11.
    Tsibouklis J, Stone M, Thorpe AA, Graham P, Nevell TG, Ewen RJ. Surface energy characteristics of polymer film structures: a further insight into the molecular design requirements. Langmuir. 1999;15:7076–9.CrossRefGoogle Scholar
  12. 12.
    Suchanek W, Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. Mater Res. 1998;13(1):94–117.CrossRefGoogle Scholar
  13. 13.
    Smith SD, Long TE, McGrath JE. Thermogravimetric analysis of poly(alkyl methacrylates) and poly(methylmethacrylate-g-dimethyl siloxane) graft copolymers. J Polym Sci: A Polym Chem. 1994;32(9):1747–53.CrossRefGoogle Scholar
  14. 14.
    Bertini F, Audisio G, Zuev VV. Investigation on the thermal degradation of poly-n-alkyl acrylates and poly-n-alkyl methacrylates (C1–C12). Polym Degrad Stab. 2005;89(2):233–9.CrossRefGoogle Scholar
  15. 15.
    Awad MK. Effect of alkyl substituents on the thermal degradation of poly(alkyl methacrylate): a molecular orbital study using the ASED-MO method. Polym Degrad Stab. 1995;49(3):339–46.CrossRefGoogle Scholar
  16. 16.
    Czech Z, Pelech R. Thermal degradation of poly(alkyl methacrylates). J Therm Anal Calorim. 2010;100(2):641–4.CrossRefGoogle Scholar
  17. 17.
    Wang T, Dorner-Reisel A, Müller E. Thermogravimetric and thermokinetic investigation of the dehydroxylation of a hydroxyapatite powder. J Eur Ceram Soc. 2004;24:693–8.CrossRefGoogle Scholar
  18. 18.
    Bianco A, Cacciotti I, Lombardi M, Montanaro L, Gusmano G. Thermal stability and sintering behaviour of hydroxyapatite nanopowders. J Therm Anal Calorim. 2007;88(1):237–43.CrossRefGoogle Scholar
  19. 19.
    Dawes C. Clearance of substances from the oral cavity—implications for oral health. In: Edgar WM, O’Mullane DM, editors. Saliva and oral health. 2nd ed. London: British Dental Journal; 1996. p. 67–79.Google Scholar
  20. 20.
    Patel MM, Smart JD, Nevell TG, Ewen RJ, Eaton PJ, Tsibouklis J. Mucin/poly(acrylic acid) interactions: a spectroscopic investigation of mucoadhesion. Biomacromolecules. 2003;4(5):1184–90.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • Birthe V. Nielsen
    • 1
    • 2
  • Thomas G. Nevell
    • 1
  • Eugen Barbu
    • 1
  • Gareth D. Rees
    • 3
  • John Tsibouklis
    • 1
  1. 1.School of Pharmacy and Biomedical SciencesUniversity of PortsmouthPortsmouthUK
  2. 2.School of ScienceUniversity of GreenwichChatham MaritimeUK
  3. 3.GlaxoSmithKline R&DWeybridgeUK

Personalised recommendations