Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 103, Issue 1, pp 213–218 | Cite as

Radiation effects in physical aging of binary As–S and As–Se glasses

  • R. Golovchak
  • O. Shpotyuk
  • A. Kozdras
  • B. J. Riley
  • S. K. Sundaram
  • J. S. McCloy
Article

Abstract

Radiation-induced physical aging effects are studied in binary As x S100−x and As x Se100−x (30 ≤ x ≤ 42) glasses by conventional differential scanning calorimetry (DSC) method. It is shown that γ-irradiation (Co60 source, ~3 MGy dose) of glassy As x S100−x caused a measurable increase in glass transition temperature and endothermic peak area in the vicinity of glass transition region, which was associated with acceleration of structural relaxation processes in these materials. In contrast to sulfide glasses, the samples of As–Se family did not exhibit any significant changes in DSC curves after γ-irradiation. The observed difference in radiation-induced physical aging between sulfides and selenides was explained by more effective destruction-polymerization transformations and possible metastable defects formation in S-based glassy network.

Keywords

DSC Chalcogenide glass Physical aging Radiation effects 

Notes

Acknowledgements

This work was partially supported by the STCU Project 4418. The PNNL authors acknowledge support from the Department of Energy, National Nuclear Security Administration, Office of Nonproliferation Research and Development (NA-22), Pacific Northwest National Laboratory, a multiprogram national laboratory operated by Battelle for the US Department of Energy under Contract DE-AC05-76RL01830.

References

  1. 1.
    Zakery A, Elliott SR. Optical non-linearities in chalcogenide glasses and their applications. Berlin: Springer; 2007.Google Scholar
  2. 2.
    Bureau B, Zhang XH, Smektala F, Adam J-L, Troles J, Ma H, Boussard-Pledel C, Lucas J, Lucas P, Coq DL, Riley MR, Simmons JH. Recent advances in chalcogenide glasses. J Non-Cryst Solids 2004;345&346:276–283.Google Scholar
  3. 3.
    Sundaram SK, Johnson BR, Schweiger MJ, Martinez JE, Riley BJ, Saraf LV, Anheier NC Jr, Allen PJ, Schultz JF. Chalcogenide glasses and structures for quantum sensing. Proc SPIE. 2004;5359:234–46.CrossRefGoogle Scholar
  4. 4.
    Golovchak R, Gorecki CZ, Kozdras A, Shpotyuk O. Physical ageing effects in vitreous arsenic selenides. Sol State Commun. 2006;137:67–9.CrossRefGoogle Scholar
  5. 5.
    Saiter JM, Arnoult M, Grenet J. Very long physical ageing in inorganic polymers exemplified by the GexSe1−x vitreous system. Physica B. 2005;355:370–6.CrossRefGoogle Scholar
  6. 6.
    Feltz A. Amorphous inorganic materials and glasses. New York: VCH Publishers; 1993.Google Scholar
  7. 7.
    Struik LCE. Physical aging in amorphous polymers and other materials. New York: Elsevier; 1978.Google Scholar
  8. 8.
    Boolchand P, Lucovsky G, Phillips JC, Thorpe MF. Self-organization and the physics of glassy networks. Phil Mag. 2005;85:3823–38.CrossRefGoogle Scholar
  9. 9.
    Chen P, Boolchand P, Georgiev DG. Long-term aging of selenide glasses: evidence of sub-Tg endotherms and pre-Tg exotherms. J Phys Condens Matter. 2010;22:065104–20.CrossRefGoogle Scholar
  10. 10.
    Lucas P, King EA, Doraiswamy A, Jivaganont P. Competitive photostructural effects in Ge–Se glass. Phys Rev B. 2005;71:104207–13.CrossRefGoogle Scholar
  11. 11.
    Lucas P, King EA, Horner AD, Johnson BR, Sundaram SK. Photostructural relaxation in As–Se–S glasses: effect of network fragility. J Non-Cryst Solids. 2006;352:2067–72.CrossRefGoogle Scholar
  12. 12.
    Golovchak R, Kozdras A, Shpotyuk O. Physical ageing in glassy As–Se induced by above-bandgap photoexposure. Solid State Commun. 2008;145:423–6.CrossRefGoogle Scholar
  13. 13.
    Golovchak R, Kozdras A, Kozyukhin S, Shpotyuk O. High-energy γ-irradiation effect on physical ageing in Ge–Se glasses. Nuclear Instr Methods Phys Res B. 2009;267:2958–61.CrossRefGoogle Scholar
  14. 14.
    Imran MMA, Al-Hamarneh IF, Awadallah MI, Al-Ewaisi MA. Physical ageing in Se94Sn6 glass induced by gamma irradiation. Physica B. 2008;403:2639–42.CrossRefGoogle Scholar
  15. 15.
    Golovchak R, Kozdras A, Cz Gorecki, Shpotyuk O. Gamma-irradiation-induced physical ageing in As–Se glasses. J Non-Cryst Solids. 2006;352:4960–3.CrossRefGoogle Scholar
  16. 16.
    Shpotyuk OI. Radiation-induced effects in chalcogenide vitreous semiconductors. In: Fairman R, Ushkov B, editors. Semiconducting Chalcogenide Glass 1: glass formation, Structure and simulated transformations in chalcogenide glasses. New York: Elsevier Academic Press; 2004.Google Scholar
  17. 17.
    Shpotyuk OI. Gamma-induced changes in optical properties of chalcogenide glass semiconductors. Ukr Phys J. 1990;35(10):1545–9.Google Scholar
  18. 18.
    Golovchak R, Shpotyuk O, Kozdras A. On the reversibility window in binary As–Se glasses. Phys Lett A. 2007;370:504–8.CrossRefGoogle Scholar
  19. 19.
    De Bolt MA, Easteal AJ, Macedo PB, Moynihan CT. Analysis of structural relaxation in glass using rate heating data. J Am Ceram Soc. 1976;59(1–2):16.Google Scholar
  20. 20.
    Blachnik R, Hoppe A. Glass transition and specific heats in the systems P–S, P–Se, As–S and As–Se. J Non-Cryst Solids. 1979;34:191–201.CrossRefGoogle Scholar
  21. 21.
    Golovchak R, Shpotyuk O, Kozdras A, Bureau B, Vlcek M, Ganjoo A, Jain H. Atomistic model of physical ageing in Se-rich As–Se glasses. Phil Mag. 2007;87:4323–34.CrossRefGoogle Scholar
  22. 22.
    Golovchak R, Shpotyuk O, Kozdras A, Vlcek M, Bureau B, Jain H. Long-term physical ageing in As–Se glasses with short chalcogen chains. J Phys Condens Matter. 2008;20:245101–7.CrossRefGoogle Scholar
  23. 23.
    Golovchak R, Kovalskiy A, Miller AC, Jain H, Shpotyuk O. Structure of Se-rich As–Se glasses by high-resolution X-ray photoelectron spectroscopy. Phys Rev B. 2007;76:125208–17.CrossRefGoogle Scholar
  24. 24.
    Golovchak R, Jain H, Shpotyuk O, Kozdras A, Saiter A, Saiter J-M. Experimental verification of the reversibility window concept in binary As–Se glasses subjected to a long-term physical aging. Phys Rev B. 2008;78:014202–6.CrossRefGoogle Scholar
  25. 25.
    Starodubcev SV, Azizov SA, Domoryad IA, Peshykov EV, Khiznichenko LP. Changes of the mechanical characteristics of some solids under gamma-irradiation. In: Influence of nuclear radiation on the materials. Moscow: AN SSSR; 1962.Google Scholar
  26. 26.
    Domoryad IA, Kolomiets BT. Changes in the elastic properties of As2S3–As2Se3 glasses under the influence of ionizing radiation. Izv AN SSSR Inorg Mat. 1971;7(9):1620–1.Google Scholar
  27. 27.
    Pikaev AК. Modern radiation chemistry. Main statements, experimental technique and methods. Moscow: Nauka; 1985.Google Scholar
  28. 28.
    Golovchak R, Shpotyuk O. Radiation-induced bond switching in mixed Ge–As sulphide glasses. Phil Mag. 2005;85:2847–60.CrossRefGoogle Scholar
  29. 29.
    Shpotyuk OI, Kovalskiy AP, Skordeva E, Vateva E, Arsova D, RYa Golovchak, Vakiv MM. Effect of gamma-irradiation on the optical properties of GexAs40-xS60 glasses. Physica B. 1999;271:242–7.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • R. Golovchak
    • 1
  • O. Shpotyuk
    • 1
    • 2
  • A. Kozdras
    • 3
  • B. J. Riley
    • 4
  • S. K. Sundaram
    • 4
  • J. S. McCloy
    • 4
  1. 1.Lviv Scientific Research Institute of Materials of SRC “Carat”LvivUkraine
  2. 2.Institute of PhysicsJan Dlugosz UniversityCzestochowaPoland
  3. 3.Department of Physics of Opole University of TechnologyOpolePoland
  4. 4.Pacific Northwest National LaboratoryRichlandUSA

Personalised recommendations