Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 102, Issue 2, pp 809–811 | Cite as

Thermal behavior of LaPO4·nH2O and NdPO4·nH2O nanopowders

  • Konstantin S. GavrichevEmail author
  • Mikhail A. Ryumin
  • Alexander V. Tyurin
  • Andrey V. Khoroshilov
  • Larisa P. Mezentseva
  • Alexander V. Osipov
  • Valeriy L. Ugolkov
  • Viktor V. Gusarov
Article

Abstract

Thermal behavior of LaPO4·nH2O and NdPO4·nH2O nanopowders from room temperature to 973 K was investigated by DSC, TA/DTG, ESM, and X-ray study. Mass loss due to the release of adsorbed and hydrate water was found in the range from 323 to 623 K. Phase transitions from hexagonal structure nanopowders to monoclinic one for bulk specimens were found above 873 K.

Keywords

Thermal behavior Nanopowders Lanthanide orthophosphates 

References

  1. 1.
    Zhao Y, Frost RL, Martens WN, Zhu HY. XRD, TEM and thermal analysis of Fe doped boehmite nanofibers and nanosheets. J Therm Anal Calorim. 2007;90:755–60.CrossRefGoogle Scholar
  2. 2.
    Gavrichev K, Bolshakov A, Kondakov D, Khoroshilov A, Denisov S. Thermal transformations of lead oxides. J Therm Anal Calorim. 2008;92:857–63.CrossRefGoogle Scholar
  3. 3.
    Majzlan J, Navrotsky A, Casey WH. Surface enthalpy of boehmite. Clays Clay Miner. 2000;48:699–707.CrossRefGoogle Scholar
  4. 4.
    Wang L, Tan Z, Meng S, Liang D, Liu B. Low temperature heat capacity and thermal stability of nanocrystalline nickel. Thermochim Acta. 2002;386:23–6.CrossRefGoogle Scholar
  5. 5.
    Mayo MJ, Suresh A, Porter WD. Thermodynamics for nanosystems: grain and particle-size dependent phase diagrams. Rev Adv Mater Sci. 2003;5:100–9.Google Scholar
  6. 6.
    Navrotsky A, Mazeina L, Majzlan J. Size-driven structural and thermodynamic complexity in iron oxides. Science. 2008;319:1635–8.CrossRefGoogle Scholar
  7. 7.
    Nicula R, Stir M, Schick C, Burkel E. High-temperature high-pressure crystallization and sintering behavior of brookite-free nanostructured titanium dioxide: in situ experiments using synchrotron radiation. Thermochim Acta. 2003;403:129–36.CrossRefGoogle Scholar
  8. 8.
    Mooney RCL. X-ray diffraction study of cerium phosphate and related crystals I. Hexagonal modification. Acta Crystallogr. 1950;3:337–40.CrossRefGoogle Scholar
  9. 9.
    Jaulmes S. Affinement de la structure de LaPO4. Bull Soc Fr Miner Cristallogr. 1972;95:42–6.Google Scholar
  10. 10.
    Lohmueller G, Schmidt G, Deppisch B, Gramlich V, Scheringer C. Die Kristallstrukturen von Yttrium-Vanadat, Lutetium-Phosphat und Lutetium-Arsenat. Acta Crystallogr B. 1973;29:141–2.CrossRefGoogle Scholar
  11. 11.
    Bondar’ IA, Domansky AI, Mezentseva LP, Degen MG, Kalinina NE. Physicochemical investigation of rare-earth orthophosphates. Rus J Inorg Chem. 1976;21:2045–50.Google Scholar
  12. 12.
    Osipov AV, Mezentseva LP, Drozdova IA, Kuchaeva SK, Ugolkov VL, Gusarov VV. Crystallization and thermal transformations in nanocrystals of the YPO4–LuPO4–H2O system. Glass Phys Chem. 2007;33:169–73.CrossRefGoogle Scholar
  13. 13.
    Osipov AV, Mezentseva LP, Drozdova IA, Kuchaeva SK, Ugolkov VL, Gusarov VV. Preparation and thermal transformations in nanocrystals of the LaPO4–LuPO4–H2O system. Glass Phys Chem. 2009;35:431–5.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • Konstantin S. Gavrichev
    • 1
    Email author
  • Mikhail A. Ryumin
    • 1
  • Alexander V. Tyurin
    • 1
  • Andrey V. Khoroshilov
    • 1
  • Larisa P. Mezentseva
    • 2
  • Alexander V. Osipov
    • 2
  • Valeriy L. Ugolkov
    • 2
  • Viktor V. Gusarov
    • 2
  1. 1.Kurnakov Institute of General and Inorganic ChemistryMoscowRussia
  2. 2.Institute of Silicate Chemistry of RASSt.-PetersburgRussia

Personalised recommendations