Journal of Thermal Analysis and Calorimetry

, Volume 102, Issue 2, pp 729–737 | Cite as

Microcalorimetric determination of effect of the antioxidant (Quercetin) on polymer/surfactant interactions

  • Kulbir Singh
  • D. Gerrard Marangoni


Isothermal titration calorimetry (ITC) and batch calorimetry techniques have been used to evaluate the effect of added antioxidant (Quercetin, QN) on the binding between a polymer/surfactant complex, namely the sodium salt of polystyrene sulfonate (PSS) and typical anionic surfactant sodium dodecylsulfate (SDS). An indirect isotherm approximation method and the Satake–Yang model have been used to evaluate the binding parameter (Ku), adsorption cooperativity (u), and the Gibbs free energy of cooperative and non-cooperative binding (ΔG C and ΔG N) from the ITC data. The enthalpy of dissolution of QN into various PSS/water and PSS/SDS/water solutions has been evaluated from batch calorimetry to study the energetics of the polymer/surfactant binding in the presence of QN.


Isothermal titration calorimetry (ITC) Batch calorimetry Polymer/surfactant Antioxidant Quercetin 



The authors thank NSERC (Discovery Grant, D.G.M; Research Capacity Development Grant, StFX), the Atlantic Innovation Fund, and the St FX University Council for Research for the financial support of this research.


  1. 1.
    Hayakawa K, Shinohara S, Sasawaki S, Satake I, Kwak JCT. Solubilization of water-insoluble dyes by polyion/surfactant complexes. Bull Chem Soc Jpn. 1995;68:2179–85.CrossRefGoogle Scholar
  2. 2.
    Wang C, Tam KC. Interactions between poly(acrylic acid) and sodium dodecyl sulfate: isothermal titration calorimetric and surfactant ion-selective electrode studies. J Phys Chem B. 2005;109:5156–61.CrossRefGoogle Scholar
  3. 3.
    Haldar B, Chakrabarty A, Mallick A, Mandal MC, Das P, Chattopadhyay N. Fluorometric and isothermal titration calorimetric studies on binding interaction of a telechelic polymer with sodium alkyl sulfates of varying chain length. Langmuir. 2006;22:3514–20.CrossRefGoogle Scholar
  4. 4.
    Lapitsky Y, Parikh M, Kaler EW. Calorimetric determination of surfactant/polyelectrolyte binding isotherms. J Phys Chem B. 2007;111:8379–87.CrossRefGoogle Scholar
  5. 5.
    Cliff MJ, Gutierrez A, Ladbury JE. A survey of the year 2003 literature on applications of isothermal titration calorimetry. J Mol Recognit. 2004;17:513–23.CrossRefGoogle Scholar
  6. 6.
    Velázquez Campoy A, Freire E. ITC in the post-genomic era…? Priceless. Biophys Chem. 2005;115:115–24.CrossRefGoogle Scholar
  7. 7.
    Saboury A. Binding isotherm determination by isothermal titration calorimetry. J Therm Anal Calorim. 2004;77:997–1004.CrossRefGoogle Scholar
  8. 8.
    Scott MJ, Jones MN. The interaction of phospholipid liposomes with zinc citrate particles: a microcalorimetric investigation. Colloids Surf A. 2001;182:247–56.CrossRefGoogle Scholar
  9. 9.
    Hertog MGL, Hollman PCH, van de Putte B. Content of potentially anticarcinogenic flavonoids of tea infusions, wines, and fruit juices. J Agric Food Chem. 1993;41:1242–6.CrossRefGoogle Scholar
  10. 10.
    Hertog MGL, Hollman PCH, Katan MB. Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands. J Agric Food Chem. 1992;40:2379–83.CrossRefGoogle Scholar
  11. 11.
    Takahama U. Suppression of lipid photoperoxidation by quercetin and its glycosides in spinach chloroplasts. Photochem Photobiol. 1983;38:363–7.CrossRefGoogle Scholar
  12. 12.
    Cheng F, Breen K. On the ability of four flavonoids, baicilein, luteolin, naringenin, and quercetin, to suppress the fenton reaction of the iron-ATP complex. Biometals. 2000;13:77–88.CrossRefGoogle Scholar
  13. 13.
    Bors W, Saran M. Radical Scavenging by flavonoid antioxidants. Free Radical Res. 1987;2:289–94.CrossRefGoogle Scholar
  14. 14.
    Cook NC, Samman S. Flavonoids—chemistry, metabolism, cardioprotective effects, and dietary sources. J Nutr Biochem. 1996;7:66–76.CrossRefGoogle Scholar
  15. 15.
    Middleton E Jr, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev. 2000;52:673–751.Google Scholar
  16. 16.
    Solimani R. The flavonols quercetin, rutin and morin in DNA solution: UV–vis dichroic (and mid-infrared) analysis explain the possible association between the biopolymer and a nucleophilic vegetable-dye. Biochim Biophys Acta. 1997;1336:281–94.Google Scholar
  17. 17.
    Kitson TM, Kitson KE, Moore SA. Interaction of sheep liver cytosolic aldehyde dehydrogenase with quercetin, resveratrol and diethylstilbestrol. Chem Biol Interact. 2001;130–132:57–69.CrossRefGoogle Scholar
  18. 18.
    Dangles O, Dufour C, Manach C, Morand C, Remesy C. Binding of flavonoids to plasma proteins. Methods Enzymol. 2001;335:319–33.CrossRefGoogle Scholar
  19. 19.
    Frazier RA, Papadopoulou A, Mueller-Harvey I, Kissoon D, Green RJ. Probing protein-tannin interactions by isothermal titration microcalorimetry. J Agric Food Chem. 2003;51:5189–95.CrossRefGoogle Scholar
  20. 20.
    Deaville ER, Green RJ, Mueller-Harvey I, Willoughby I, Frazier RA. Hydrolyzable tannin structures influence relative globular and random coil protein binding strengths. J Agric Food Chem. 2007;55:4554–61.CrossRefGoogle Scholar
  21. 21.
    Diab C, Winnik FM, Tribet C. Enthalpy of interaction and binding isotherms of non-ionic surfactants onto micellar amphiphilic polymers (amphipols). Langmuir. 2007;23:3025–35.CrossRefGoogle Scholar
  22. 22.
    Kujawa P, Raju BB, Winnik FM. Interactions in water of alkyl and perfluoroalkyl surfactants with fluorocarbon- and hydrocarbon-modified poly(N-isopropylacrylamides). Langmuir. 2005;21:10046–53.CrossRefGoogle Scholar
  23. 23.
    Su J, Liu S, Joshi S, Lam Y. Effect of SDS on the gelation of hydroxypropylmethylcellulose hydrogels. J Therm Anal Calorim. 2008;93:495–501.CrossRefGoogle Scholar
  24. 24.
    Bai G, Castro V, Nichifor M, Bastos M. Calorimetric study of the interactions between surfactants and dextran modified with deoxycholic acid. J Therm Anal Calorim. 2010;100:413–22.CrossRefGoogle Scholar
  25. 25.
    Li Y, Fei G, Honglin Z, Zhen L, Liqiang Z, Ganzuo L. Effects of long-chain alcohols on the micellar properties of anionic surfactants in non-aqueous solutions by titration microcalorimetry. J Therm Anal Calorim. 2009;96:859–64.CrossRefGoogle Scholar
  26. 26.
    Coldren BA, Warriner H, van Zanten R, Zasadzinski JA. Lamellar gels and spontaneous vesicles in catanionic surfactant mixtures. Langmuir. 2006;22:2465–73.CrossRefGoogle Scholar
  27. 27.
    Taheri-Kafrani A, Bordbar A. Energitics of micellizaion of sodium n-dodecyl sulfate at physiological conditions using isothermal titration calorimetry. J Therm Anal Calorim. 2009;98:567–75.CrossRefGoogle Scholar
  28. 28.
    Zidelkheir B, Abdelgoad M. Effect of surfactant agent upon the structure of montmorillonite. J Therm Anal Calorim. 2008;94:181–7.CrossRefGoogle Scholar
  29. 29.
    Lee VA, Craig RG, Filisko FE, Zand R. Microcalorimetry of the adsorption of lysozyme onto polymeric substrates. J Colloid Interface Sci. 2005;288:6–13.CrossRefGoogle Scholar
  30. 30.
    Zajac J. Adsorption microcalorimetry used to study interfacial aggregation of quaternary ammonium surfactants (zwitterionic and cationic) on powdered silica supports in dilute aqueous solutions. Colloids Surf. 2000;167:3–19.CrossRefGoogle Scholar
  31. 31.
    Singh S, Caram-Lelham N. Thermodynamis of k-carrageenan-amphiphilic drug interaction as influenced by specific counterions and temperature: a microcalorimetric and viscometric study. J Colloid Interface Sci. 1998;203:430–46.CrossRefGoogle Scholar
  32. 32.
    Lu L, Cai J, Frost R. Desorption of stearic acid upon surfactant adsorbed montmorillonite. J Therm Anal Calorim. 2010;100:141–4.CrossRefGoogle Scholar
  33. 33.
    De Lisi R, Lazzara G. Aggregation in aqueous media of tri-block copolymers tuned by the molecular selectivity of cyclodextrins. J Therm Anal Calorim. 2009;97:797–803.CrossRefGoogle Scholar
  34. 34.
    Rezaei Behbehani G, Mirzaie M. A high performance method for thermodynamic study on the binding of copper ion and glycine with Alzheimer’s amyloid β peptide. J Therm Anal Calorim. 2009;96:631–5.CrossRefGoogle Scholar
  35. 35.
    Lira A, Nanclares D, Neto A, Marchetti J. Drug–polymer interaction in the all-trans retinoic acid release from chitosan microparticles. J Therm Anal Calorim. 2007;87:899–903.CrossRefGoogle Scholar
  36. 36.
    Liu W, Guo R. Interaction between flavonoid, quercetin and surfactant aggregates with different charges. J Colloid Interface Sci. 2006;302:625–32.CrossRefGoogle Scholar
  37. 37.
    Bordbar A, Hosseinzadeh R, Norozi I M. Interaction of a homologous series of n-alkyl trimethyl ammonium bromides with eggwhite lysozyme. J Therm Anal Calorim. 2007;87:453–6.CrossRefGoogle Scholar
  38. 38.
    Satake I, Yang JT. Interaction of sodium decyl sulfate with poly(l-ornithine) and poly(l-lysine) in aqueous solution. Biopolymers. 1976;15:2263–75.CrossRefGoogle Scholar
  39. 39.
    Santerre JP, Hayakawa K, Kwak JCT. A study of the temperature dependence of the binding of a cationic surfactant to an anionic polyelectrolyte. Colloids Surf. 1985;13:35–45.CrossRefGoogle Scholar
  40. 40.
    Hayakawa K, Kwak JCT. Surfactant–polyelectrolyte interactions. 1. Binding of dodecyltrimethylammonium ions by sodium dextran sulfate and sodium poly(styrenesulfonate) in aqueous solution in the presence of sodium chloride. J Phys Chem. 1982;86:3866–70.CrossRefGoogle Scholar
  41. 41.
    Hayakawa K, Santerre JP, Kwak JCT. Study of surfactant–polyelectrolyte interactions. Binding of dodecyl- and tetradecyltrimethylammonium bromide by some carboxylic polyelectrolytes. Macromolecules. 1983;16:1642–5.CrossRefGoogle Scholar
  42. 42.
    Wang C, Tam KC. Interaction between polyelectrolyte and oppositely charged surfactant: effect of charge density. J Phys Chem B. 2004;108:8976–82.CrossRefGoogle Scholar
  43. 43.
    Wang C, Tam KC, Jenkins RD, Tan CB. Interactions between methacrylic acid/ethyl acrylate copolymers and dodecyltrimethylammonium bromide. J Phys Chem B. 2003;107:4667–75.CrossRefGoogle Scholar
  44. 44.
    Burrows HD, Tapia MJ, Silva CL, Pais AACC, Fonseca SM, Pina J, de Melo JS, Wang Y, Marques EF, Knaapila M, Monkman AP, Garamus VM, Pradhan S, Scherf U. Interplay of electrostatic and hydrophobic effects with binding of cationic Gemini surfactants and a conjugated polyanion: experimental and molecular modeling studies. J Phys Chem B. 2007;111:4401–10.CrossRefGoogle Scholar
  45. 45.
    Chandar P, Somasundaran P, Turro NJ. Fluorescence probe investigation of anionic polymer-cationic surfactant interactions. Macromolecules. 1988;21:950–3.CrossRefGoogle Scholar
  46. 46.
    Yoshida K, Dubin PL. Complex formation between polyacrylic acid and cationic/nonionic mixed micelles: effect of pH on electrostatic interaction and hydrogen bonding. Colloids Surf A. 1999;147:161–7.CrossRefGoogle Scholar
  47. 47.
    Kiefer JJ, Somasundaran P, Ananthapadmanabhan KP. Interaction of tetradecyltrimethylammonium bromide with poly(acrylic acid) and poly(methacrylic acid). Effect of charge density. Langmuir. 1993;9:1187–92.CrossRefGoogle Scholar
  48. 48.
    Shimizu T. Changes of pH and counterion activity during the binding process of cationic surfactants to carboxylic polyions. Colloids Surf A. 1994;84:239–48.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  1. 1.Department of ChemistrySt Francis Xavier UniversityAntigonishCanada

Personalised recommendations