Skip to main content
Log in

Thermoanalytical investigation of relative reactivity of some nitrate oxidants in tin-fueled pyrotechnic systems

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In order to investigate relative reactivity of different oxidants in solid-state reactions of pyrotechnic mixtures, thermal properties of Sn + Sr(NO3)2, Sn + Ba(NO3)2, and Sn + KNO3 pyrotechnic systems have been studied by means of TG, DTA, and DSC methods and the results compared with those of pure oxidants. The apparent activation energy (E), ΔG #, ΔH #, and ΔS # of the combustion processes were obtained from the DSC experiments. The results showed that the nature of oxidant has a significant effect on ignition temperature, and the kinetic of the pyrotechnic mixtures’ reactions, and the relative reactivity of these mixtures was found to obey in the following order: Sn + Sr(NO3)2 > Sn + Ba(NO3)2 > Sn + KNO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Brown ME. Some thermal studies on pyrotechnic compositions. J Therm Anal Calorim. 2001;65:323–34.

    Article  CAS  Google Scholar 

  2. Sivapirakasam SP, Surianarayanan M, Chandrasekaran F, Swaminathan G. Thermal hazards of cracker mixture using DSC. J Therm Anal Calorim. 2004;78:799–808.

    CAS  Google Scholar 

  3. Roduit B, Borgeat C, Berger B, Folly P, Andres H, Schädeli U, Vogelsanger B. UP-scaling of DSC DATA of high energetic materials, simulation of cook-off experiments. J Therm Anal Calorim. 2006;85:195–202.

    Article  CAS  Google Scholar 

  4. Berger B, Brammer AJ, Charsley EL, Rooney JJ, Warrington SB. Thermal analysis studies on the boron–potassium perchlorate–nitrocellulose pyrotechnic system. J Therm Anal. 1997;49:1327–55.

    Article  CAS  Google Scholar 

  5. Hosseini SG, Pourmortazavi SM, Hajimirsadeghi SS. Thermal decomposition of pyrotechnic mixtures containing sucrose with either potassium chlorate or potassium perchlorate. Combust Flame. 2005;14:322–6.

    Article  Google Scholar 

  6. Roduit B, Borgeat C, Berger B, Folly P, Alonso B, Aebischer JN, Stoessel F. Advanced kinetic tools for the evaluation of decomposition reactions, determination of thermal stability of energetic materials. J Therm Anal Calorim. 2005;80:229–36.

    Article  CAS  Google Scholar 

  7. Charsley EL, Laye PG, Brown ME. Handbook of thermal analysis and calorimetry: pyrotechnics. 1st ed. Amsterdam: Elsevier; 2003. p. 777–815.

    Google Scholar 

  8. Akhavan J. The chemistry of explosives. 2nd ed. London: The Royal Society of Chemistry; 2004.

    Google Scholar 

  9. Ianoş R, Lazău I, Păcurariu C. Metal nitrate/fuel mixture reactivity and its influence on the solution combustion synthesis of γ-LiAlO2. J Therm Anal Calorim. 2007;97:209–14.

    Google Scholar 

  10. Patnaik P. Handbook of inorganic chemicals. New York: McGraw-Hill Companies, Inc; 2003.

    Google Scholar 

  11. Cashdollar KL, Cashdollar I, Zlochower A. Explosion temperatures and pressures of metals and other elemental dust clouds. J Loss Prev Proc. 2007;20:337–48.

    Article  CAS  Google Scholar 

  12. Cashdollar KL. Flammability of metals and other elemental dust clouds. Process Saf Prog. 1994;13:139–45.

    Article  CAS  Google Scholar 

  13. Yoganarasimhan SR, Josyulu OS. Reactivity of the ternary pyrotechnic system red lead–silicon-ferric oxide, Defense. Sci J. 1987;37:73–83.

    CAS  Google Scholar 

  14. Knowlton GD, Ludwig CP. Auto-ignition composition, WO1997/045294, 12 Apr 1997.

  15. Pourmortazavi SM, Hajimirsadeghi SS, Hosseini SG. Characterization of the aluminum/potassium chlorate mixtures by simultaneous TG-DTA. J Therm Anal Calorim. 2006;84:557–61.

    Article  CAS  Google Scholar 

  16. Stets VP, Karlov VP, Butuzov GN, Ryabukha AA. Heat treatment of tin powder. Powder Metall Met C+. 1989;28:837–9.

    Article  Google Scholar 

  17. de Klerk WPC, Krabbendam-LaHaye ELM, Berger B, Brechbuhl H, Popescu C. Thermal studies to determine the accelerated ageing of flares. J Therm Anal Calorim. 2005;80:529–36.

    Article  Google Scholar 

  18. Kosanke KB, Kubota N, Sturman B, Jennings-White C. Pyrotechnic chemistry. Pyrotechnic reference series no.4. USA: Journal of pyrotechnics, Inc.; 2004.

  19. Ellern H. Military and civilian pyrotechnic. New York: Chemical Publishing Company Inc; 1968.

    Google Scholar 

  20. McLain JH. Pyrotechnics from the viewpoint of solid state chemistry. Philadelphia, Penna: The Franklin Institute Press; 1980.

    Google Scholar 

  21. Rugunanan RA, Brown ME. Reactions of powdered silicon with some pyrotechnic oxidants. J Therm Anal Calorim. 1991;37:1193–211.

    Article  CAS  Google Scholar 

  22. Turcotte R, Fouchard RC, Turcotte A-M, Jones DEG. Thermal analysis of black powder. J Therm Anal Calorim. 2003;73:105–18.

    Article  CAS  Google Scholar 

  23. Freeman ES. The kinetics of the thermal decomposition of potassium nitrate and of the reaction between potassium nitrite and oxygen. J Am Chem Soc. 1957;79:838–42.

    Article  CAS  Google Scholar 

  24. Shimizu T. Fireworks. The art science and technique. USA: Pyrotechnica Publications; 1981.

    Google Scholar 

  25. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem.1957;29:1702–6.

    Article  Google Scholar 

  26. Lehmann B, Karger-Kocsis J. Isothermal and non-isothermal crystallisation kinetics of pCBT and PBT. J Therm Anal Calorim. 2009;95:221–6.

    Article  CAS  Google Scholar 

  27. Hatakeyama T, Quinn FX. Thermal analysis, fundamentals and applications to polymer science fundamentals and applications to polymer science. New York: Wiley; 1994.

    Google Scholar 

  28. ASTM E698-05. Standard test method for Arrhenius kinetic constants for thermally unstable materials. doi:10.1520/E0698-05.

  29. Criado JM, Perez-Maqueda LA, Sanchez-Jimenez PE. Dependence of the preexponential factor on temperature. J Therm Anal Calorim. 2005;82:671–5.

    Article  CAS  Google Scholar 

  30. Eslami A, Hosseini SG, Pourmortazavi SM. Thermoanalytical investigation on some boron-fuelled binary pyrotechnic systems. Fuel. 2008;87:3339–43.

    Article  CAS  Google Scholar 

  31. Wang T, Lu YX, Zhu ML, Zhang JS, Ji SJ. DSC research on critical temperature in thermal explosion synthesis reaction Ti+ 3Al→TiAl3. J Therm Anal Calorim. 2002;67:605–11.

    Article  CAS  Google Scholar 

  32. Zhang TL, Hu RZ, Xie Y, Li FP. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC. Thermochim Acta. 1994;244:171–6.

    Article  CAS  Google Scholar 

  33. Missler GL, Tarr A. Inorganic chemistry. 4th ed. Upper Saddle River: Pearson Prentice Hall; 2010.

    Google Scholar 

  34. Markowitz MM, Boryta DA. The differential thermal analysis of perchlorate. J Phys Chem. 1964;68:2282–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Eslami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosseini, S.G., Eslami, A. Thermoanalytical investigation of relative reactivity of some nitrate oxidants in tin-fueled pyrotechnic systems. J Therm Anal Calorim 101, 1111–1119 (2010). https://doi.org/10.1007/s10973-010-0813-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0813-x

Keywords

Navigation