Journal of Thermal Analysis and Calorimetry

, Volume 100, Issue 3, pp 763–768 | Cite as

Thermal, UV and FTIR spectral studies of urea–thiourea zinc chloride single crystal



A single crystal of urea–thiourea was grown by slow evaporation of aqueous solution at room temperature. The bright and transparent crystals obtained were characterised by TG–DTA, UV and FTIR spectral analyses. A fitting decomposition pattern for the title compound was formulated on the TG curve which shows a two stage mass loss between 200 and 750 °C. DTA curve shows exothermic peaks supporting the formulated decomposition pattern in this temperature range. The UV and FTIR spectra show the characteristic absorption, vibration frequencies due to urea–thiourea zinc chloride crystals. Detailed structural analysis of the compound is under progress.


Solution growth Urea–thiourea zinc chloride single crystal TG–DTA UV FTIR 


  1. 1.
    Krishnan H, Justin C, Jerome S. Growth and characterization of novel ferroelectric urea-succinic acid single crystals. J Cryst Growth. 2008;310:3313–7.CrossRefGoogle Scholar
  2. 2.
    Gupte SS, Desai CF. Vickers hardness anisotropy and slip system in zinc(tris)thioureasulphate crystals. Cryst Res Technol. 1999;34:1329–32.CrossRefGoogle Scholar
  3. 3.
    Verma S, Singh MK, Wadhavan VK, Suresh CH. Growth morphology of zinctris(thiourea)sulphate crystals. J Phys. 2000;54:879–84.Google Scholar
  4. 4.
    Boomadevi S, Dhanasekaran R, Ramasamy P. Investigation on nucleation kinetics of urea crystals from methanol. Cryst Res Technol. 2002;37:159–68.CrossRefGoogle Scholar
  5. 5.
    Sangwal K, Mielniczek-Brzoska E. Effect of impurities on metastable zone width for the growth of ammonium oxalate monohydrate crystals from aqueous solutions. J Cryst Growth. 2004;267:662–75.CrossRefGoogle Scholar
  6. 6.
    Li G, Xue L, Su G, Li Z, Zhuang X, He Y. Rapid growth of KDP crystal from aqueous solutions with additives and its optical studies. Cryst Res Technol. 2005;40:867–70.CrossRefGoogle Scholar
  7. 7.
    Meenakshisundarm SP, Parthiban S, Madhurambal G, Mojumdar SC. Effect of chelating agent (1, 10-phenanthroline) on potassium hydrogen phthalate crystals. J Therm Anal Calorim. 2008;94:21–5.CrossRefGoogle Scholar
  8. 8.
    Skorsepa JS, Gyoryova K, Melnik M. Preparation, identification and thermal properties of (CH3CH2COO)2Zn.2L.H2O (L = thiourea, nicotinamide, caffeine or theorbromine). J Therm Anal. 1995;44:169–77.CrossRefGoogle Scholar
  9. 9.
    Ondrusova D, Jona E, Simon P. Thermal properties of N-ethyl-N-phenyldithiocarbamates and their influence on the kinetics of cure. J Therm Anal Calorim. 2002;67:147–52.CrossRefGoogle Scholar
  10. 10.
    Kubranova M, Jona E, Rudinska E, Nemcekova K, Ondrusova D, Pajtasova M. Thermal properties of Co-, Ni- and Cu-exchanged montmorillonite with 3-hydroxypyridine. J Therm Anal Calorim. 2003;74:251–7.CrossRefGoogle Scholar
  11. 11.
    Czakis-Sulikowska D, Czylkowska A. Complexes of Mn(II), Co(II), Ni(II) and Cu(II) with 4, 4′-bipyridine and dichloroacetates. J Therm Anal Calorim. 2003;71:395–405.CrossRefGoogle Scholar
  12. 12.
    Madhurambal G, Ramasamy P, Anbusrinivasan P, Vasudevan G, Kavitha S, Mojumdar SC. Growth and characterization studies of 2-bromo-4′-chloro-acetophenone (BCAP) crystals. J Therm Anal Calorim. 2008;94:59–62.CrossRefGoogle Scholar
  13. 13.
    Verma RK, Verma L, Ranjan M, Verma BP, Mojumdar SC. Thermal analysis of 2-oxocyclopentanedithiocarboxylato complexes of iron(III), copper(II) and zinc(II) containing pyridine or morpholine as the second ligand. J Therm Anal Calorim. 2008;94:27–31.CrossRefGoogle Scholar
  14. 14.
    Mojumdar SC, Melnik M, Jona E. Thermoanalytical investigation of magnesium(II) complexes with pyridine as bio-active ligand. J Therm Anal Calorim. 1999;56:541–6.CrossRefGoogle Scholar
  15. 15.
    Rathore HS, Varshney G, Mojumdar SC, Saleh MT. Synthesis, characterization and fungicidal activity of zinc diethyldithiocarbamate and phosphate. J Therm Anal Calorim. 2007;90:681–6.CrossRefGoogle Scholar
  16. 16.
    Mojumdar SC, Madhurambal G, Saleh MT. A study on synthesis and thermal, spectral and biological properties of carboxylato-Mg(II) and carboxylate-Cu(II) complexes with bioactive ligands. J Therm Anal Calorim. 2005;81:205–10.CrossRefGoogle Scholar
  17. 17.
    Varshney KG, Agrawal A, Mojumdar SC. Pectin based cerium(IV) and thorium(IV) phosphates as novel hybrid fibrous ion exchangers synthesis, characterization and thermal behaviour. J Therm Anal Calorim. 2005;81:183–9.CrossRefGoogle Scholar
  18. 18.
    Jona E, Rudinska E, Sapietova M, Pajtasova M, Ondrusova D, Jorik V, et al. Interaction of pyridine derivatives into the interlayer spaces of Cu(II)-montmorillonites. Res J Chem Environ. 2005;9:41–3.Google Scholar
  19. 19.
    Madhurambal G, Mojumdar SC, Hariharan S, Ramasamy P. TG, DTC, FT-IR and Raman spectral analysis of Zna/Mgb ammonium sulfate mixed crystals. J Therm Anal Calorim. 2004;78:125–33.CrossRefGoogle Scholar
  20. 20.
    Kuznetsov VA, Okhrimenko TM, Rak M. Growth promoting effect of organic impurities on growth kinetics of KAP and KDP crystals. J Cryst Growth. 1998;193:164–73.CrossRefGoogle Scholar
  21. 21.
    Zaitseva NP, Rashkovich LN, Bogatyreva SV. Stability of KH2PO4 and K(H, D)2PO4 solutions at fast crystal growth rates. J Cryst Growth. 1995;148:276–82.CrossRefGoogle Scholar
  22. 22.
    Nyvlt J, Rychly R, Gottfried J, Wurzelova J. Metastable zone-width of some aqueous solutions. J Cryst Growth. 1970;6:151–62.CrossRefGoogle Scholar
  23. 23.
    Rak M, Eremin NN, Eremina TA, Kuznetsov VA, Okhrimenko TM, Furmanova NG, et al. On the mechanism of impurity influence on growth kinetics and surface morphology of KDP crystals-I: defect centers formed by bivalent and trivalent impurity ions incorporated in KDP structure-theoretical study. J Cryst Growth. 2005;273:577–85.CrossRefGoogle Scholar
  24. 24.
    Ushasree PM, Jayavel R, Ramasamy P. Growth and characterization of phosphate mixed ZTS single crystals. Mater Sci Engg B. 1999;65:153–8.CrossRefGoogle Scholar
  25. 25.
    Bhagavannarayana G, Choubey A, Shubin YV, Lal K. Study of point defects in as-grown and annealed bismuth germanate single crystals. J Appl Cryst. 2005;38:448–54.CrossRefGoogle Scholar
  26. 26.
    Kurtz SK, Perry TT. A powder technique for the evaluation of nonlinear optical materials. Appl Phys. 1968;39:3798–813.CrossRefGoogle Scholar
  27. 27.
    Hall SR, Kolinsky PV, Jones R, Allen S, Gordon P, Bothwell B, et al. Polymorphism and nonlinear optical activity in organic crystals. J Cryst Growth. 1986;79:745–51.CrossRefGoogle Scholar
  28. 28.
    Jayalakshmi D, Kumar J. Growth and characterization of bis thiourea zinc acetate. Cryst Res Technol. 2006;41:37–40.CrossRefGoogle Scholar
  29. 29.
    Gunasekaran S, Ponnusamy S. Growth and characterization of cadmium magnesium tetra thiocyanate crystals. Cryst Res Technol. 2006;41:130–7.CrossRefGoogle Scholar
  30. 30.
    Udayalakshmi K, Ramamurthi K. Optical, mechanical and thermal properties of p-bromoacetanilide. Cryst Res Technol. 2006;41:795–9.CrossRefGoogle Scholar
  31. 31.
    Kumar K, Ramamurthy K. A novel growth method for zinc thiourea sulphate single crystals. Cryst Res Technol. 2006;41:217–20.CrossRefGoogle Scholar
  32. 32.
    Rajasekaran R, Rajendran KV. Investigation on nucleation of cadmium thiourea chloride single crystals. Mater Chem and Phys. 2003;82:273–80.CrossRefGoogle Scholar
  33. 33.
    Angelimary PA, Dhanuskodi S. Growth and characterization of a new nonlinear optic. Bisthiourea zinc chloride. 2001;36:1231–7.Google Scholar
  34. 34.
    Hameed SH, Ravi G, Dhanasekaran R, Ramasamy P. Growth and characterization of KDP and KAP. J Cryst Growth. 2000;212:227–34.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  1. 1.ADM College for WomenNagapattinamIndia
  2. 2.EGS Pillay Engineering CollegeNagapattinamIndia
  3. 3.Department of EngineeringUniversity of New BrunswickSaint JohnCanada

Personalised recommendations