Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 102, Issue 3, pp 867–873 | Cite as

On the goethite to hematite phase transformation

  • Stefano GialanellaEmail author
  • Fabrizio Girardi
  • Gloria Ischia
  • Ivan Lonardelli
  • Maurizio Mattarelli
  • Maurizio Montagna
Article

Abstract

This study deals with some microstructural and crystallographic aspects of the thermally induced transformation of goethite (α-FeOOH) into hematite (α-Fe2O3), occurring at about 300 °C. Powder specimens of goethite have been annealed in air at different temperatures, ranging from 200 °C up to 1,000 °C. The resulting products have been analyzed for a complete characterization of the changes brought about by the thermal treatments, using a multianalytical approach, based on: thermogravimetry, differential thermal analysis, transmission electron microscopy, Raman spectroscopy, and X-ray diffraction. At lower temperatures, the transition to hematite produces no important changes in size and shape of the original goethite grains. Recrystallization, and partial sintering, occurs only at temperatures in excess of 800 °C. The relevant evolution of pores present in both phases has been also considered, as it may provide important indications on the actual formation mechanism of hematite.

Keywords

Iron oxide Phase transformation Thermogravimetry X-ray diffraction Raman spectroscopy Transmission electron microscopy 

Notes

Acknowledgements

We thank the Provincia Autonoma di Trento for financial support through the Projects: PAT-CRS2006 (DIGITEM); MATIS; PAT-CRS2008 (Analisi micro-Raman di materiali).

References

  1. 1.
    Trassati S. Transition metal oxides: versatile materials for electrocatalysis. In: Lipkowski J, Ross P, editors. Electrochemistry of novel materials, vol. III. Weinheim, Germany: VCH Verlagsgesellschaft; 1994. p. 207.Google Scholar
  2. 2.
    Busca G, Daturi M, Finocchio E, Lorenzelli V, Ramis G, Willey RJ. Transition metal mixed oxides as combustion catalysts: preparation, characterization and activity mechanisms. Catal Today. 1997;33:239–49.CrossRefGoogle Scholar
  3. 3.
    Cornell RM, Schwertmann U. The iron oxides. Weinheim, Germany: VCH Verlagsgesellschaft; 1996.Google Scholar
  4. 4.
    Marean CW, Bar-Matthews M, Bernatchez J, Fisher E, Goldberg P, Herries AIR, et al. Early human use of marine resources and pigment in South Africa during the Middle Pleistocene. Nature. 2008;449:905–8.CrossRefGoogle Scholar
  5. 5.
    Colombo L. Il colore degli antichi. 2nd ed. Florence: Nardini; 2003.Google Scholar
  6. 6.
    Ruan HD, Frost RL, Kloprogge JT, Duong L. Infrared spectroscopy of goethite dehydroxylation: III. FT-IR microscopy of in situ study of the thermal transformation of goethite to hematite. Spectrochim Acta A. 2002;58:967–81.CrossRefGoogle Scholar
  7. 7.
    Ruan HD, Frost RL, Kloprogge JT, Duong L. Infrared spectroscopy of goethite dehydroxylation. II. Effect of aluminium substitution on the behaviour of hydroxyl units. Spectrochim Acta A. 2002;58:479–91.CrossRefGoogle Scholar
  8. 8.
    Lutterotti L, Matthies S, Wenk HR, Goodwin M. Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J Appl Phys. 1997;81:594–600.CrossRefGoogle Scholar
  9. 9.
    Lonardelli I, Wenk HR, Lutterotti L, Goodwin M. Texture analysis from synchrotron diffraction images with the Rietveld method: dinosaur tendon and salmon scale. J Synchrotron Radiat. 2005;12:354–60.CrossRefGoogle Scholar
  10. 10.
    Labar JL. Consistent indexing of a (set of) single crystal SAED pattern(s) with the process diffraction program. Ultramicroscopy. 2005;103:237–49.CrossRefGoogle Scholar
  11. 11.
    Ruan HD, Frost RL, Kloprogge JT. The behavior of hydroxyl units of synthetic goethite and its dehydroxylated product hematite. Spectrochim Acta A. 2001;57:2575–86.CrossRefGoogle Scholar
  12. 12.
    Gualtieri AF, Venturelli P. In situ study of the goethite-hematite phase transformation by real time synchrotron powder diffraction. Am Mineral. 1999;84:895–904.Google Scholar
  13. 13.
    Hongley F, Song B, Li Q. Thermal behavior of goethite during transformation to hematite. Mater Chem Phys. 2006;98:148–53.CrossRefGoogle Scholar
  14. 14.
    Walter D, Buxbaum D, Laqua W. The mechanism of the thermal transformation from goethite to hematite. J Therm Anal Calorim. 2001;63:733–48.CrossRefGoogle Scholar
  15. 15.
    Saito T. The anomalous thermal expansion of hematite at a high temperature. Bull Chem Soc Jpn. 1965;38:2008–9.CrossRefGoogle Scholar
  16. 16.
    Ocaña M, Morales MP, Serna CJ. The growth mechanism of α-Fe2O3 ellipsoidal particles in solution. J Colloid Interface Sci. 1995;171:85–91.CrossRefGoogle Scholar
  17. 17.
    Bersani D, Lottici P, Montenero A. Micro-Raman investigation of iron oxide films and powders produced by sol-gel syntheses. J Raman Spectrosc. 1999;30:355–60.CrossRefGoogle Scholar
  18. 18.
    Gouadec G, Colomban P. Raman spectroscopy of nanomaterials: how spectra relate to disorder, particle size and mechanical properties. Prog Cryst Growth Charact Mater. 2007;53:1–56.CrossRefGoogle Scholar
  19. 19.
    Housecroft C, Sharpe AG. Inorganic chemistry. Harlow: Prentice Hall; 2007.Google Scholar
  20. 20.
    Massey MJ, Baier U, Merlin R, Weber WH. Effects of pressure and isotopic-substitution on the Raman-spectrum of alpha-Fe2O3—identification of 2-magnon scattering. Phys Rev B. 1990;41:7822–7.CrossRefGoogle Scholar
  21. 21.
    Pelino M, Toro L, Petroni M, Florindi A, Cantalini C. Study of the kinetics of decomposition of goethite in vacuo and pore structure of product particles. J Mater Sci. 1989;24:409–12.CrossRefGoogle Scholar
  22. 22.
    Rendon JL, Cornejo J, De Arambarri P, Serna J. Grinding-induced effects on goethite (α-FeOOH). J Colloid Interface Sci. 1983;92:508–16.CrossRefGoogle Scholar
  23. 23.
    de Faria DLA, Lopes FN. Heated goethite and natural hematite: can Raman spectroscopy be used to differentiate them? Vib Spectrosc. 2007;45:117–21.CrossRefGoogle Scholar
  24. 24.
    Frost RL, Ding Z, Ruan HD. Thermal analysis of goethite. Relevance to Australian indigenous art. J Therm Anal Calorim. 2003;71:783–97.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • Stefano Gialanella
    • 1
    Email author
  • Fabrizio Girardi
    • 1
  • Gloria Ischia
    • 1
  • Ivan Lonardelli
    • 1
  • Maurizio Mattarelli
    • 2
  • Maurizio Montagna
    • 2
  1. 1.Dipartimento di Ingegneria dei Materiali e Tecnologie IndustrialiUniversità degli Studi di TrentoMesiano, TrentoItaly
  2. 2.Dipartimento di FisicaUniversità degli Studi di TrentoPovo, TrentoItaly

Personalised recommendations