Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 102, Issue 1, pp 83–90 | Cite as

Thermal stability and degradation of Co(II), Cd(II), and Zn(II) complexes with N-benzyloxycarbonylglycinato ligand

  • Maja T. Šumar-Ristović
  • Dragica M. Minić
  • Dejan Poleti
  • Zoran Miodragović
  • Đenana Miodragović
  • Katarina K. Anđelković
Article

Abstract

Thermal behavior of Co(II), Cd(II), and Zn(II) complexes with N-benzyloxycarbonylglycinato ligand was investigated using the results of TG, DSC and DTG analysis obtained at different heating rates (2.5 to 30 °C min−1), from room temperature to about 900 °C. Mechanisms of complex degradation, as well as enthalpies of the degradation processes were determined. It is shown that thermal stability of investigated complexes correlates with their crystal structures, especially with the presence of crystallization and coordinated water molecules. The values of dehydration enthalpies are discussed and correlated with composition of the complexes. Kissinger’s, Ozawa’s, and Friedman’s isoconversion methods were used for the determination of kinetic parameters: the pre-exponential factor A and the apparent activation energy E a. For all three complexes and all steps of degradation, the values of kinetics parameters obtained by Kissinger’s and Ozawa’s methods are in good agreement. The results obtained by Friedman’s method showed that some decomposition steps are simple and some others are complex ones.

Keywords

Metal complexes N-benzyloxycarbonylglycine Thermal analysis Thermal stability 

Notes

Acknowledgements

This work was supported by the Ministry of Science and Technological Development of the Republic of Serbia, Grant Nos. 142062 and 142030.

References

  1. 1.
    Sharrok P, Thibaundeau CH, Caille A. Magnetic studies of two new copper hippurate dimers. Inorg Chem. 1971;18:510–2.CrossRefGoogle Scholar
  2. 2.
    Battistuzzi Gavioli G, Benedeti L, Grandi G, Marcotrigiano G, Pellacani GC, Tonelli M. Comparison of the polographic behavior of the Cd2+-glycine, N-acetyl- and N-benzoyl-glycine systems in aqueous and ethanolic solution. Inorg Chim Acta. 1979;37:5–9.CrossRefGoogle Scholar
  3. 3.
    Sajadi Z, Almahood M, Loeffler LJ, Hall IH. Antitumor and antiinflammatory agents: N-benzoyl-protected cyanomethyl esters of amino acids. J Med Chem. 1971;22:1419–22.CrossRefGoogle Scholar
  4. 4.
    Antolini L, Menabue L, Saladini M, Sola M, Bataglia LP, Corradi AB. Imidazole-containing ternary complexes of N-benzyloxycarbonyl-aminoacids. Crystal and molecular structure of bis(N-benzyloxycarbonyl-alaninato)bis-(N-methylimidazole)copper(II) ethanol solvate. Inorg Chim Acta. 1984;93:61–6.CrossRefGoogle Scholar
  5. 5.
    Bataglia LP, Corradi AB, Marcotrigiano G, Menabue L, Pellacani GC. Copper(II) complexes of nitrogen-protected amino acids: synthesis and spectroscopic, magnetic, and structural properties of bis(N-acetyl-β-alaninato)diaquacopper(II) and tetrakis[μ-(N-acetyl-β-alaninato)]-diaquadicopper(II) dihydrate. A case of structural isomerism. Inorg Chem. 1981;20:1075–80.CrossRefGoogle Scholar
  6. 6.
    Antolini L, Menabue L, Prampolini P, Saladini M. Magnetic and spectroscopic properties of dimeric copper(II)N-benzoylvalinates. J Chem Soc Dalton Trans. 1982; 2109-12.Google Scholar
  7. 7.
    Cariati F, Erre L, Micera G, Menabue L, Prampolini P. Magnetic investigations on some copper(II) N-acetyl- and N-benzoyl-alaninates. Inorg Chim Acta. 1982;63:85–9.CrossRefGoogle Scholar
  8. 8.
    Udupa MR, Krebs B. Crystal and molecular structure of tetra-μ-N-acetylglycinatodiaquodicopper(II). Inorg Chim Acta. 1979;37:1–4.CrossRefGoogle Scholar
  9. 9.
    Anagnostopulos A, Hadjispyrou S. Effects of mixed-ligand complex formation on deprotonation of amide groups in N-benzoylglycine and N-(4-aminobenzoyl)glycine. J Inorg Biochem. 1995;57:279–86.CrossRefGoogle Scholar
  10. 10.
    Lambert DM, Geurts M, Scriba GKE, Poupaert JH, Dumont P. Simple derivatives of amino acid neurotransmitters. Anticonvulsant evaluation of derived amides, carbamates and esters of glycine and β-alanine. J Pharm Belg. 1995;50:194–203.Google Scholar
  11. 11.
    Chikaraishi Kasuga NC, Yamamoto R, Hara A, Amano A, Nomiya K. Molecular design, crystal structure, antimicrobial activity and reactivity of light-stable and water-soluble Ag–O bonding silver(I) complexes, dinuclear silver(I) N-acetylglycinate. Inorg Chim Acta. 2006;359:4412–6.CrossRefGoogle Scholar
  12. 12.
    Nomiya K, Takahashi S, Noguchi R, Nemoto S, Takayama T, Oda M. Synthesis and characterization of water-soluble silver(I) complexes with l-histidine (H2his) and (S)-(−)-2-pyrrolidone-5-carboxylic acid (H2pyrrld) showing a wide spectrum of effective antibacterial and antifungal activities. Crystal structures of chiral helical polymers [Ag(Hhis)]n and {[Ag(Hpyrrld)]2}n in the solid state. Inorg Chem. 2000;39:3301–11.CrossRefGoogle Scholar
  13. 13.
    Nomiya K, Takahashi S, Noguchi R. Water-soluble silver(I) complexes of (R)-(+)- and (S)-(–)-2-pyrrolidone-5-carboxylic acid and their antimicrobial activities. Chiral helical polymer and polymer sheet structures in the solid-state formed by self-assembly of dimeric [Ag(Hpyrrld)]2 cores. J Chem Soc Dalton Trans. 2000;4369-73.Google Scholar
  14. 14.
    Nomiya K, Takahashi S, Noguchi R. Synthesis and crystal structure of three silver(I) complexes with (S)-(+)-5-oxo-2-tetrahydrofurancarboxylic acid (S-Hothf) and its isomeric forms (R-Hothf and R,S-Hothf) showing wide spectra of effective antibacterial and antifungal activities. Chiral helical polymers in the solid state formed by self-assembly of the dimeric [Ag(othf)]2 cores. J Chem Soc Dalton Trans. 2000;1343-8.Google Scholar
  15. 15.
    Geurts M, Poupaert JH, Scriba GKE, Lambert DM. N-(benzyloxycarbonyl)glycine esters and amides as new anticonvulsants. J Med Chem. 1998;41:24–30.CrossRefGoogle Scholar
  16. 16.
    Sussan S, Dagan A, Bialer M. Pharmacokinetic analysis and anticonvulsant activity of glycine and glycinamide derivatives. Epilepsy Res. 1998;33:11–21.CrossRefGoogle Scholar
  17. 17.
    Lambert DM, Scriba GKE, Poupaert JH, Dumont P. Anticonvulsant activity of ester- and amide-type lipid conjugates of glycine and N-benzyloxycarbonylglycine. Eur J Pharm Sci. 1996;4:159–66.CrossRefGoogle Scholar
  18. 18.
    Koch W, Scheer M, Wolke U, Kaiser A. United States Patent Appl. No. 189:371, 1971.Google Scholar
  19. 19.
    Miodragović ĐU, Mitić DM, Miodragović ZM, Bogdanović GA, Vitnik ŽJ, Vitorović MD, et al. Syntheses, characterization and antimicrobial activity of the first complexes of Zn(II), Cd(II) and Co(II) with N-benzyloxycarbonylglycine: X-ray crystal structure of the polymeric Cd(II) complex. Inorg Chim Acta. 2008;361:86–94.CrossRefGoogle Scholar
  20. 20.
    Bakalova A. Thermal and spectroscopic investigation of new binuclear Pt(II) complexes with carboxylic acids. J Thermal Anal Calorim. 2009;96:593–7.CrossRefGoogle Scholar
  21. 21.
    Patron L, Carp O, Mindru I, Marinescu G, Segal E. Iron, nickel and zinc malates coordination compounds synthesis, characterization and thermal behaviour. J Thermal Anal Calorim. 2003;72:281–8.CrossRefGoogle Scholar
  22. 22.
    Jisha KR, Suma S, Sudarsanakumar MR. Synthesis, spectral characterisation and thermal studies of zirconyl complexes of biologically active molecules. J Thermal Anal Calorim. 2010;99:509–13.CrossRefGoogle Scholar
  23. 23.
    Luan SR, Zhu YH, Jia YQ, Cao Q. Characterization and thermal analysis of thiourea and bismuth trichloride complex. J Thermal Anal Calorim. 2010;99:523–30.CrossRefGoogle Scholar
  24. 24.
    Soliman MH, Mohamed GG, Mohamed EA. Metal complexes of fenoterol drug. J Thermal Anal Calorim. 2010;99:639–47.CrossRefGoogle Scholar
  25. 25.
    Tian L, Ren N, Zhang JJ, Liu HM, Sun SJ, Ye HM, et al. Synthesis and thermal decomposition kinetics of two lanthanide complexes with cinnamic acid and 2,2′-bipyridine. J Thermal Anal Calorim. 2010;99:349–56.CrossRefGoogle Scholar
  26. 26.
    Bakalova A, Varbanov H, Buyukliev R, Momekov G, Ivanov D. Palladium(II) complexes with 5-methyl-5-(4-pyridyl)-2,4-imidazolidenedione synthesis, thermogravimetric and cytotoxic investigation. J Thermal Anal Calorim. 2009;95:241–6.CrossRefGoogle Scholar
  27. 27.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  28. 28.
    Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Thermal Anal Calorim. 1970;2:301–24.CrossRefGoogle Scholar
  29. 29.
    Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry—application to a phenolic resin. J Polym Sci C. 1964;6:183–95.Google Scholar
  30. 30.
    Poleti D, Stojaković Đ. The thermal behavior of ternary cobalt(II), nickel(II) and copper(II) complexes with phthalate ion and 1,10-phenanthroline or 2,2′-dipyridylamine. Thermochim Acta. 1992;205:225–33.CrossRefGoogle Scholar
  31. 31.
    Rogan J, Poleti D. Thermal behaviour of mixed ligand Co(II), Ni(II) and Cu(II) complexes containing terephthalate ligands. Thermochim Acta. 2004;413:227–34.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • Maja T. Šumar-Ristović
    • 1
  • Dragica M. Minić
    • 2
  • Dejan Poleti
    • 3
  • Zoran Miodragović
    • 1
  • Đenana Miodragović
    • 1
  • Katarina K. Anđelković
    • 1
  1. 1.Faculty of ChemistryUniversity of BelgradeBelgradeSerbia
  2. 2.Faculty of Physical ChemistryUniversity of BelgradeBelgradeSerbia
  3. 3.Department of General and Inorganic Chemistry, Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia

Personalised recommendations