Journal of Thermal Analysis and Calorimetry

, Volume 99, Issue 3, pp 965–971 | Cite as

Characterization of gold supported on Al2O3–CuO–Mn2O3 catalysts obtained by thermal decomposition of aerosols

  • Barbara MałeckaEmail author
  • Maria Rajska


Gold (~1%) has been supported on the mixed oxides Al2O3–CuO–Mn2O3 with molar compositions 1:1:1, 1:0.7:0.3, 1:0.3:0.7, prepared by spray pyrolysis method. The supports and catalysts have been characterized by TG, DTA, N2 physisorption, XRD, SEM, and TEM methods and tested for CO oxidation (25–300 °C). The catalysts revealed high specific surface area and amorphous form for compositions 1:0.7:0.3 and 1:0.3:0.7. Gold deposited on the supports lowered the T 50 values by 50–80 °C. The highest CO conversion was obtained for 1:1:1 composition.


TG DTA Spray pyrolysis Gold catalysts Transition metal oxides Oxidation of CO 



The authors thank Ms. Barbara Trybalska of the Faculty of Materials Science and Ceramics AGH UST, Kraków, Poland for performing the SEM measurements. This study has been performed with the financial support of the Polish Ministry of Science and Higher Education, under the grant No.


  1. 1.
    Haruta M, Yamada N, Kobayashi T, Iijima S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J Catal. 1989;115:301–9.CrossRefGoogle Scholar
  2. 2.
    Tseng Ch-H, Yang TCK, Wu H-E, Chiang H-Ch. Catalysis of oxidation of carbon monoxide on supported gold nanoparticle. J Hazard Mater. 2009;166:686–94.CrossRefGoogle Scholar
  3. 3.
    Min BK, Friend CM. Heterogeneous gold-based catalysis for green chemistry: low-temperature CO oxidation and propene oxidation. Chem Rev. 2007;107:2709–24.CrossRefGoogle Scholar
  4. 4.
    Hughes MD, Xu Y-J, Jenkins P, McMorn P, Landon P, Enache DI, et al. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature. 2005;437:1132–5.CrossRefGoogle Scholar
  5. 5.
    Nguyen LQ, Salim Ch, Hinode H. Performance of nano-sized Au/TiO2 for selective catalytic reduction of NOx by propene. Appl Catal A. 2008;347:94–9.CrossRefGoogle Scholar
  6. 6.
    Baatz C, Decker N, Prüße U. New innovative gold catalysts prepared by an improved incipient wetness method. J Catal. 2008;258:165–9.CrossRefGoogle Scholar
  7. 7.
    Landon P, Collier PJ, Carley AF, Chadwick D, Papworth AJ, Burrows A, et al. Direct synthesis of hydrogen peroxide from H2 and O2 using Pd and Au catalysts. Phys Chem Chem Phys. 2003;5:1917–23.CrossRefGoogle Scholar
  8. 8.
    Cárdenas-Lizana F, Gómez-Quero S, Keane MA. Gas phase hydrogenation of m-dinitrobenzene over alumina supported Au and Au–Ni alloy. Catal Lett. 2009;127:25–32.CrossRefGoogle Scholar
  9. 9.
    Nutt MO, Heck KN, Alvarez P, Wong MS. Improved Pd-on-Au bimetallic nanoparticle catalysts for aqueous-phase trichloroethene hydrodechlorination. Appl Catal B. 2006;69:115–25.CrossRefGoogle Scholar
  10. 10.
    Boccuzzi F, Chiorino A, Manzoli M, Lu P, Akita T, Ichikawa S, et al. Au/TiO2 nanosized samples: a catalytic, TEM, and FTIR study of the effect of calcination temperature on the CO oxidation. J Catal. 2001;202:256–67.CrossRefGoogle Scholar
  11. 11.
    Lopez N, Janssens TVW, Clausen BS, Xu Y, Mavrikakis M, Bligaard T, et al. On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J Catal. 2004;223:232–5.CrossRefGoogle Scholar
  12. 12.
    Ivanova S, Pitchon V, Zimmermann Y, Petit C. Preparation of alumina supported gold catalysts: influence of washing procedures, mechanism of particles size growth. Appl Catal A. 2006;298:57–64.CrossRefGoogle Scholar
  13. 13.
    Daté M, Okumura M, Tsubota S, Haruta M. Vital role of moisture in the catalytic activity of supported gold nanoparticles. Angew Chem Int Ed Engl. 2004;43:2129–32.CrossRefGoogle Scholar
  14. 14.
    Schubert MM, Hackenberg S, van Veen AC, Muhler M, Plzak V, Behm RJ. CO Oxidation over supported gold catalysts—“inert” and “active” support materials and their role for the oxygen supply during reaction. J Catal. 2001;197:113–22.CrossRefGoogle Scholar
  15. 15.
    Bond GC, Thompson DT. Gold-catalysed oxidation of carbon monoxide. Gold Bull. 2000;33:41–50.Google Scholar
  16. 16.
    Gluhoi AC, Bogdanchikova N, Nieuwenhuys BE. The effect of different types of additives on the catalytic activity of Au/Al2O3 in propene total oxidation: transition metal oxides and ceria. J Catal. 2005;229:154–62.CrossRefGoogle Scholar
  17. 17.
    Wang L-C, Huang X-S, Liu Q, Liu Y-M, Cao Y, He H-Y, et al. Gold nanoparticles deposited on manganese(III) oxide as novel efficient catalyst for low temperature CO oxidation. J Catal. 2008;259:66–74.CrossRefGoogle Scholar
  18. 18.
    Dekker MAP, Lippits MJ, Nieuwenhuys BE. Supported gold/MOx catalysts for NO/H2 and CO/O2 reactions. Catal Today. 1999;54:381–90.CrossRefGoogle Scholar
  19. 19.
    Mariño F, Descorme C, Duprez D. Supported base metal catalysts for the preferential oxidation of carbon monoxide in the presence of excess hydrogen (PROX). Appl Catal B. 2005;58:175–83.CrossRefGoogle Scholar
  20. 20.
    Centeno MA, Paulis M, Montes M, Odriozola JA. Catalytic combustion of volatile organic compounds on Au/CeO2/Al2O3 and Au/Al2O3 catalysts. Appl Catal A. 2002;234:65–78.CrossRefGoogle Scholar
  21. 21.
    Wang D, Haob Z, Chenga D, Shi X, Hub C. Influence of pretreatment conditions on low-temperature CO oxidation over Au/MOx/Al2O3 catalysts. J Mol Catal A. 2003;200:229–38.CrossRefGoogle Scholar
  22. 22.
    Grisel RJH, Nieuwenhuys BE. A comparative study of the oxidation of CO and CH4 over Au/MOx/Al2O3 catalysts. Catal Today. 2001;64:69–81.CrossRefGoogle Scholar
  23. 23.
    Gluhoi AC, Dekkers MAP, Nieuwenhuys BE. Comparative studies of the N2O/H2, N2O/CO, H2/O2 and CO/O2 reactions on supported gold catalysts: effect of the addition of various oxides. J Catal. 2003;219:197–205.CrossRefGoogle Scholar
  24. 24.
    Grisel RJH, Westrate CJ, Goossens A, Craje MWJ, van der Kraan AM, Nieuwenhuys BE. Oxidation of CO over Au/MOx/Al2O3 multi-component catalysts in a hydrogen-rich environment. Catal Today. 2002;72:123–32.CrossRefGoogle Scholar
  25. 25.
    Bakrania SD, Rathore GK, Wooldridge MS. An investigation of the thermal decomposition of gold acetate. J Therm Anal Calorim. 2009;95:117–22.CrossRefGoogle Scholar
  26. 26.
    Li WB, Wang JX, Gong H. Catalytic combustion of VOCs on non-noble metal catalysts. Catal Today. 2009;148:81–7.CrossRefGoogle Scholar
  27. 27.
    Morales MR, Barbero BP, Cadŭs LE. Evaluation and characterization of Mn–Cu mixed oxide catalysts for ethanol total oxidation: influence of copper content. Fuel. 2008;87:1177–86.CrossRefGoogle Scholar
  28. 28.
    Wang L-C, He L, Liu Y-M, Cao Y, He H-Y, Fan K-N, et al. Effect of pretreatment atmosphere on CO oxidation over α-Mn2O3 supported gold catalysts. J Catal. 2009;264:145–53.CrossRefGoogle Scholar
  29. 29.
    Wang L-C, Liu Q, Huang X-S, Liu Y-M, Cao Y, Fan K-N. Gold nanoparticles supported on manganese oxides for low-temperature CO oxidation. Appl Catal B. 2009;88:204–12.CrossRefGoogle Scholar
  30. 30.
    Shaheen WM, Hong KS. Thermal characterization and physicochemical properties of Fe2O3–Mn2O3/Al2O3 system. Thermochim Acta. 2002;381:153–64.CrossRefGoogle Scholar
  31. 31.
    Ramirez-Ortiz J, Ogura T, Medina-Valtierra J, Acosta-Ortiz SE, Bosh P, de los Reyes JA, et al. A catalytic application of Cu2O and CuO films deposited over fiberglass. Appl Surf Sci. 2001;174(3–4):177–84.CrossRefGoogle Scholar
  32. 32.
    Kim S-K, Kim K-H, Ihm S-K. The characteristics of wet air oxidation of phenol over CuOx/Al2O3 catalysts: effect of copper loading. Chemosphere. 2007;68:287–92.CrossRefGoogle Scholar
  33. 33.
    Mendes D, Garcia H, Silva VB, Mendes A, Madeira LM. Comparison of nanosized gold-based and cooper catalysts for the low-temperature water-gas shift reaction. Ind Eng Chem Res. 2009;48:430–9.CrossRefGoogle Scholar
  34. 34.
    Saitzek S, Villain S, Nolibé G, Gavarri JR. Electrical behaviour of catalytic nanostructured CeO2/CuOx composites under air–methane gas impulses. Appl Surf Sci. 2007;253:7490–6.CrossRefGoogle Scholar
  35. 35.
    Liu J, Wang S, Wang Q, Geng B. Microwave chemical route to self-assembled quasi-spherical Cu2O microarchitectures and their gas-sensing properties. Sens Actuators B. 2009;143:253–60.CrossRefGoogle Scholar
  36. 36.
    Wang Ch-H, Lin S-S, Chen Ch-L, Weng H-S. Performance of the supported copper oxide catalysts for the catalytic incineration of aromatic hydrocarbons. Chemosphere. 2006;64:503–9.CrossRefGoogle Scholar
  37. 37.
    Avgouropoulos G, Ioannides T. Effect of synthesis parameters on catalytic properties of CuO-CeO2. Appl Catal B. 2006;67:1–11.CrossRefGoogle Scholar
  38. 38.
    Mariño F, Baronetti G, Laborde M, Bion N, Le Valant A, Epron F, et al. Optimized CuO–CeO2 catalysts for COPROX reaction. Int J Hydrogen Energy. 2008;33:1345–53.CrossRefGoogle Scholar
  39. 39.
    Kucza W, Obłąkowski J, Gajerski R, Łabuś S, Danielewski M, Małecki A, et al. Synthesis and characterization of alumina- and zirconia-based powders obtained by the ultrasonic spray pyrolysis. J Therm Anal Calorim. 2007;88:65–9.CrossRefGoogle Scholar
  40. 40.
    Delmon B. Preparation of heterogeneous catalysts. Synthesis of highly dispersed solids and their reactivity. J Therm Anal Calorim. 2007;90:49–65.CrossRefGoogle Scholar
  41. 41.
    Małecki A, Gajerski R, Łabuś S, Prochowska-Klisch B, Wojciechowski KT. Mechanism of thermal decomposition of d-metals nitrates hydrates. J Therm Anal Calorim. 2000;60:17–23.CrossRefGoogle Scholar
  42. 42.
    Tsuchida T, Sakata A, Furuichi R, Ishii T. Reactivity of amorphous aluminas prepared by the thermal decomposition of aluminum chloride and nitrate. Thermochim Acta. 1981;43:91–102.CrossRefGoogle Scholar
  43. 43.
    Malecka B. Thermal decomposition of selected d-metal oxysalts. Kraków: Uczelniane Wydawnictwa Naukowo-Dydaktyczne AGH; 2005.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  1. 1.Faculty of Materials Science and CeramicsAGH University of Science and TechnologyKrakowPoland

Personalised recommendations