Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 99, Issue 3, pp 803–809 | Cite as

A thermal study approach to roman age wall painting mortars

  • A. DuranEmail author
  • L. A. Perez-Maqueda
  • J. Poyato
  • J. L. Perez-Rodriguez
Article

Abstract

Roman ancient mortars have been widely studied, in connection with both diagnosis and application required for restoring. Thermoanalytical experiments performed on mortars from Pompeii and Herculaneum provided a very good understanding of the technology employed. The mortars from Pompeii were obtained by the proper mixing of lime and marble grains while mortars of Herculaneum by lime and silicates compounds. The position of the endothermic peak of calcite decomposition showed important variations in the different samples studied, which was assigned to the different crystallinity and particle sizes. Experiments under CO2 flow confirmed the presence of magnesium calcium carbonates.

Keywords

Historic mortars Lime Marble TG–DTG–DTA Carbonates decomposition CO2 flow 

Notes

Acknowledgements

The authors gratefully acknowledge Dr. E. Millan (Fine Arts Faculty of Seville), Dra. M.C. Jimenez and Dr. A. Justo (ICMSE staff) and C2RMF staff for their assistance, and the financial support from contract MEC/FULLBRIGHT-FECYT 2007 and project MAT2008-06619/MAT (MICINN).

References

  1. 1.
    Bakolas A, Biscontin G, Moropoulou A, Zendri E. Characterisation of structural Byzantine mortars by thermogravimetric analysis. Thermochim Acta. 1998;321:151–60.CrossRefGoogle Scholar
  2. 2.
    Franzini M, Leoni L, Lezzerini M, Sartori F. The mortar of the leaning Tower of Pisa—the product of a medieval technique for preparing high-strength mortars. Eur J Miner. 2000;12(6):1151–63.Google Scholar
  3. 3.
    Moropoulou A, Bakolas A, Bisbikou K. Investigation of the technology of historic mortars. J Cult Herit. 2000;1(1):45–58.CrossRefGoogle Scholar
  4. 4.
    Pires J, Cruz AJ. Techniques of thermal analysis applied to the study of cultural heritage. J Therm Anal Calorim. 2007;87(2):411–5.CrossRefGoogle Scholar
  5. 5.
    Rizzo G, Megna B. Characterization of hydraulic mortars by means of simultaneous thermal analysis. J Therm Anal Calorim. 2008;92(1):173–8.CrossRefGoogle Scholar
  6. 6.
    Harries KA. Concrete construction in early Rome. Concr Int. 1995;1:58–62.Google Scholar
  7. 7.
    Marusin SL. Ancient concrete structures. Concr Int. 1996;1:56–8.Google Scholar
  8. 8.
    Bakolas A, Biscontin G, Contardi V, Franceschi E, Moropoulou A, Palazzi D, et al. Thermoanalytical research on traditional mortars in Venice. Thermochim Acta. 1995;269/270:817–28.CrossRefGoogle Scholar
  9. 9.
    Moropoulou A, Bakolas A, Bisbikou K. Characterization of ancient Byzantine and later historic mortars by thermal and X-ray diffraction techniques. Thermochim. Acta. 1995;269/270:779–95.CrossRefGoogle Scholar
  10. 10.
    Alvarez JI, Navarro I, Garcia-Casado PJ. Thermal, mineralogical and chemicals studies of the mortars used in the cathedral of Pamplona (Spain). Thermochim Acta. 2000;365:177–87.CrossRefGoogle Scholar
  11. 11.
    Maravelaki-Kalaitzaki P, Moropoulou A, Bakolas A. Physico-chemical study of Cretan ancient mortars. Cem Concr Res. 2003;33:651–61.CrossRefGoogle Scholar
  12. 12.
    Cardiano P, Sergi S, De Stefano C, Ioppolo S, Piraino P. Investigations on ancient mortars from the Basilian monastery of Fragala. J Therm Anal Calorim. 2008;91(2):477–85.CrossRefGoogle Scholar
  13. 13.
    Duran A, Robador MD, de Jimenez Haro MC, Ramirez-Valle V. Study by thermal analysis of mortars belonging to wall paintings corresponding to some historic buildings of Sevillian art. J Therm Anal Calorim. 2008;92(1):353–9.CrossRefGoogle Scholar
  14. 14.
    Moropoulou A, Cakmar S, Biscontin G, Bakolas A, Zendri E. Advanced Byzantine cement based composites resisting earthquake stresses: the crushed brick/lime mortars of Justinian’s Hagia Sophia. Constr Build Mater. 2002;16(8):543–52.CrossRefGoogle Scholar
  15. 15.
    Rossi-Doria PR. Mortars for restoration: basic requirements and quality control. Mater Struct. 1986;19(114):445–8.CrossRefGoogle Scholar
  16. 16.
    Stepkowska ET, Aviles MA, Blanes JM, Perez-Rodriguez JL. Gradual transformation of Ca(OH)2 into CaCO3 on cement. J Therm Anal Calorim. 2007;87(1):189–98.CrossRefGoogle Scholar
  17. 17.
    Anastasiou M, Hasapis T, Zorba T, Plavidou E, Chrissafis K, Paraskevopoulos K. TG-DTA and FTIR analyses of plasters from byzantine monuments in Balkan region. J Therm Anal Calorim. 2006;84(1):27–32.CrossRefGoogle Scholar
  18. 18.
    Duran A, Jimenez de Haro MC, Perez-Rodriguez JL, Franquelo ML, Herrera LK, Justo A. Determination of pigments and binders in Pompeian wall paintings using synchrotron radiation-high resolution X-ray powder diffraction and conventional spectroscopy-chromatography. Archaeometry 2009. doi 10.1111/j.1475-4754.2009.00478.x.Google Scholar
  19. 19.
    Duran-Benito A, Herrera-Quintero LK, Robador-Gonzalez MD, Perez-Rodriguez JL. Color study of Mudejar paintings of the pond found in the palace of Reales Alcazares. Color Res Appl. 2007;32(6):489–95.CrossRefGoogle Scholar
  20. 20.
    Vitruvius. In: M.H. Morgan, editor. De Architectura Libri decem, II (Materials) and VII (Finishes and colours). Whitefish: Kessinger Publishing; 2005. p. 493.Google Scholar
  21. 21.
    Pliny the Elder, Natural History. Paris: Societe d’Editions Les Belles letters (ed); 1985. p. 317.Google Scholar
  22. 22.
    Bruno P, Calabrese D, Di Pierro M, Genga A, Laganara C, Manigrassi D, et al. Thermical-physical and mineralogical investigation of ancient mortars from the archaeological site of Monte-Sannace. Thermochim Acta. 2004;418:131–41.CrossRefGoogle Scholar
  23. 23.
    Riccardi MP, Duminuco P, Tomasi C, Ferloni P. Thermal, microscopic and X-ray diffraction studies on some ancient mortars. Thermochim Acta. 1998;321:207–14.CrossRefGoogle Scholar
  24. 24.
    Biscontin G, Pellizon M, Zendri E. Characterization of binders employed in the manufacture of Venetian historical mortars. J Cult Herit. 2002;3(1):31–7.CrossRefGoogle Scholar
  25. 25.
    Genestar C, Pons C, Más A. Analytical characterisation of ancient mortars from the archaeological Roman city of Pollentia (Balearic Islands, Spain). Anal Chim Acta. 2006;557(1–2):373–9.CrossRefGoogle Scholar
  26. 26.
    Webb TL, Krüger JE. Carbonates. In: Mackenzie RC, editor. Differential thermal analysis. London: Academic Press; 1970. p. 303–41.Google Scholar
  27. 27.
    Vágvölgyi V, Frost RL, Hales M, Locke A, Kristof J, Horváth E. Controlled rate thermal analysis of hydromagnesite. J Therm Anal Calorim. 2008;92(3):893–7.CrossRefGoogle Scholar
  28. 28.
    Beck CW. Differential thermal analysis curves of carbonate minerals. Am Miner. 1950;35:985–1013.Google Scholar
  29. 29.
    Duran A, Castaing J, Walter P. X-ray diffraction studies of Pompeian wall paintings using synchrotron radiation and dedicated laboratory systems. Appl Phys A. (Article accepted). Google Scholar
  30. 30.
    Brysbaert A. Painted plaster from Bronze Age Thebes, Boeotia (Greece): a technological study. J Archaeol Sci. 2008;35:2761–9.CrossRefGoogle Scholar
  31. 31.
    Farmer VC. Infrared spectra of minerals. In: Farmer VC, editor. Mineralogical Society Monograph 4. London: Mineralogical Society; 1974. p. 399.Google Scholar
  32. 32.
    Ji J, Ge Y, Balsam W, Damuth JE, Chen J. Rapid identification of dolomite using a Fourier Transform Infrared Spectrophotometer (FTIR): a fast method for identifying Heinrich events in IODP Site U1308. Mar Geol. 2009;258(1–4):60–8.CrossRefGoogle Scholar
  33. 33.
    Baraldi P, Baraldi C, Curina R, Tassi L, Zannini P. A micro-Raman archaemetric apporach to Roman wall paintings. Vib Spectrosc. 2007;43(2):420–6.CrossRefGoogle Scholar
  34. 34.
    Laurie AP, McLintock WF, Miles FD. Egyptian blue. In: Procceedings of the Royal Society of London, Series A. 1914, p. 418–429.Google Scholar
  35. 35.
    Mazzochin GA, Baraldi P, Barbante C. Isotopic analysis of lead present in the cinnabar of Roman wall paintings from the X Regio (Venetia et Histria). Talanta. 2008;74(2):690–3.CrossRefGoogle Scholar
  36. 36.
    Baláz P, Post E, Bastl Z. Thermoanalytical study of mechanically activated cinnabar. Thermochim Acta. 1992;200:371–7.CrossRefGoogle Scholar
  37. 37.
    Shoval S, Gaft M, Beck P, Kirsh Y. Thermal behaviour of limestone and monocrystalline calcite tempers during firing and their use in ancient vessels. J Therm Anal Calorim. 1993;40(1):263–73.CrossRefGoogle Scholar
  38. 38.
    Perez-Maqueda LA, Perez-Rodriguez JL, Scheiffele GW, Justo A, Sanchez-Soto PJ. Thermal analysis of ground kaolinite and pyrophyllite. J Therm Anal. 1993;39(8–9):1055–67.Google Scholar
  39. 39.
    Perez-Maqueda LA, Blanes JM, Pascual J, Perez-Rodriguez JL. The influence of sonication on the thermal behavior of muscovite and biotite. J Europ Ceram Soc. 2004;24(9):2793–801.CrossRefGoogle Scholar
  40. 40.
    Perez-Rodriguez JL, Pascual J, Franco F, de Haro MCJ, Duran A, del Valle VR, Perez-Maqueda LA. The influence of ultrasound on the thermal behaviour of clay minerals. J Europ Ceram Soc. 2006;26(4–5):747–53.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • A. Duran
    • 1
    • 2
    Email author
  • L. A. Perez-Maqueda
    • 1
  • J. Poyato
    • 1
  • J. L. Perez-Rodriguez
    • 1
  1. 1.Materials Science Institute of Seville (CSIC-Seville University)SevilleSpain
  2. 2.Centre de Recherche et de Restauration des Musées de France, CNRS-C2RMF UMR 171ParisFrance

Personalised recommendations