Journal of Thermal Analysis and Calorimetry

, Volume 100, Issue 2, pp 381–384 | Cite as

The α-C–H BDE in tetralin

A time-resolved photoacoustic calorimetry study
  • Rui M. Borges dos Santos
  • Paulo M. Nunes
  • José A. Martinho Simões


The α-C–H bond dissociation enthalpy (BDE) in tetralin (1,2,3,4-tetrahydronaphtalene) was determined using time-resolved photoacoustic calorimetry as 357.6 ± 5.4 kJ mol−1. This value is some 10 kJ mol−1 higher than the only previous experimental determination but in remarkably good agreement with the α-C–H BDEs in the structurally related compounds such as 1-butene, cyclohexene, and ethylbenzene.


Tetralin Bond dissociation enthalpy Time-resolved photoacoustic calorimetry Evans–Polanyi 



This work was supported by Fundação para a Ciência e a Tecnologia (FCT), Portugal (PTDC/QUI/65535/2006). P. M. N. thanks FCT for a post-doctoral (SFRH/BPD/26677/2006) grant.


  1. 1.
    Arends IWCE, Mulder P, Clark KB, Wayner DDM. Rate constants for termination and TEMPO trapping of some resonance stabilized hydroaromatic radicals in the liquid phase. J Phys Chem. 1995;99:8182–9.CrossRefGoogle Scholar
  2. 2.
    Laarhoven LJJ, Mulder P. α-C–H bond strengths in tetralin and THF: application of competition experiments in photoacoustic calorimetry. J Phys Chem B. 1997;101:73–7.CrossRefGoogle Scholar
  3. 3.
    Finn M, Friedline R, Suleman NK, Wohl CJ, Tanko JM. Chemistry of the t-butoxyl radical: evidence that most hydrogen abstractions from carbon are entropy-controlled. J Am Chem Soc. 2004;126:7578–84.CrossRefGoogle Scholar
  4. 4.
    Muralha VS, Borges dos Santos RM, Martinho Simões JA. Energetics of alkylbenzyl radicals: a time-resolved photoacoustic calorimetry study. J Phys Chem A. 2004;108:936–42.CrossRefGoogle Scholar
  5. 5.
    Agapito F, Nunes PM, Costa Cabral BJ, Borges dos Santos RM, Martinho Simões JA. Energetics of the Allyl Group. J Org Chem. 2007;72:8770–9.CrossRefGoogle Scholar
  6. 6.
    Agapito F, Nunes PM, Costa Cabral BJ, Borges dos Santos RM, Martinho Simões JA. Energetic differences between the five- and six-membered ring hydrocarbons: strain energies in the parent and radical molecules. J Org Chem. 2008;73:6213–23.CrossRefGoogle Scholar
  7. 7.
    Diogo HP, Minas da Piedade ME, Martinho Simões JA, Nagano Y. Standard enthalpy of formation and enthalpy of vaporization of di-1, 1-dimethylethyl peroxide—reevaluation of the standard enthalpy of formation of the di-1, 1-dimethylethoxy radical. J Chem Thermodyn. 1995;27:597–604.CrossRefGoogle Scholar
  8. 8.
    Braslavsky SE, Heibel GE. Time-resolved photothermal and photoacoustic methods applied to photoinduced processes in solution. Chem Rev. 1992;92:1381–410.CrossRefGoogle Scholar
  9. 9.
    Peters KS. Time-resolved photoacoustic calorimetry: from carbenes to proteins. Angew Chem Int Ed Engl. 1994;33:294–302.CrossRefGoogle Scholar
  10. 10.
    Nunes PM, Agapito F, Costa Cabral BJ, Borges dos Santos RM, Martinho Simões JA. Enthalpy of formation of the cyclopentadienyl radical: photoacoustic calorimetry and ab initio studies. J Phys Chem A. 2006;110:5130–4.CrossRefGoogle Scholar
  11. 11.
    Borges dos Santos RM, Lagoa ALC, Martinho Simões JA. Photoacoustic calorimetry. An examination of a non-classical thermochemistry tool. J Chem Thermodyn. 1999;31:1483–510.CrossRefGoogle Scholar
  12. 12.
    Correia CF, Nunes PM, Borges dos Santos RM, Martinho Simões JA. Gas-phase energetics of organic free radicals using time-resolved photoacoustic calorimetry. Thermochim Acta. 2004;420:3–11.CrossRefGoogle Scholar
  13. 13.
    Rudzki JE, Goodman JL, Peters KS. Simultaneous determination of photoreaction dynamics and energetics using pulsed, time-resolved photoacoustic calorimetry. J Am Chem Soc. 1985;107:7849–54.CrossRefGoogle Scholar
  14. 14.
    Sound Analysis. Version 1.50D. Spokane, WA: Quantum Northwest; 1999.Google Scholar
  15. 15.
    Nunes PM, Correia CF, Borges dos Santos RM, Martinho Simões JA. Time-resolved photoacoustic calorimetry as a tool to determine rate constants of hydrogen-abstraction reactions. Int J Chem Kinet. 2006;38:357–63.CrossRefGoogle Scholar
  16. 16.
    Wayner DDM, Lusztyk E, Pagé D, Ingold KU, Mulder P, Laarhoven LJJ, et al. Effects of solvation on the enthalpies of reaction of tert-butoxyl radicals with phenol and on the calculated O–H bond strength in phenol. J Am Chem Soc. 1995;117:8737–44.CrossRefGoogle Scholar
  17. 17.
    Borges dos Santos RM, Costa Cabral BJ, Martinho Simões JA. Bond dissociation enthalpies in the gas phase and in organic solvents: making ends meet. Pure Appl Chem. 2007;79:1369–82.CrossRefGoogle Scholar
  18. 18.
    Luo YR. Comprehensive handbook of chemical bond energies. Boca Raton: CRC Press; 2007.CrossRefGoogle Scholar
  19. 19.
    Agapito F, Nunes PM, Costa Cabral BJ, Borges dos Santos RM, Martinho Simões JA, to be published.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • Rui M. Borges dos Santos
    • 1
    • 2
    • 3
  • Paulo M. Nunes
    • 1
  • José A. Martinho Simões
    • 1
    • 2
  1. 1.Centro de Química e Bioquímica, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
  2. 2.Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
  3. 3.Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e EstruturalUniversidade do AlgarveFaroPortugal

Personalised recommendations