Journal of Thermal Analysis and Calorimetry

, Volume 101, Issue 3, pp 865–872 | Cite as

Formation of gold nanoparticles in diblock copolymer micelles with various reducing agents

Kinetic and thermodynamic studies
  • S. Papp
  • L. Kőrösi
  • B. Gool
  • T. Dederichs
  • P. Mela
  • M. Möller
  • I. Dékány
Article

Abstract

Gold nanoparticles (Au NPs) were prepared by the reduction of HAuCl4 acid incorporated into the polar core of poly(styrene)-block-poly(2-vinylpyridine) (PS-b-P2VP) copolymer micelles dissolved in toluene. The formation of Au NPs was controlled using three reducing agents with different strengths: hydrazine (HA), triethylsilane (TES), and potassium triethylborohydride (PTB). The formation of Au NPs was followed by transmission electron microscopy, UV–Vis spectroscopy, isothermal titration calorimetry (ITC), and dynamic light scattering (DLS). It was found that the strength of the reducing agent determined both the size and the rate of formation of the Au NPs. The average diameters of the Au NPs prepared by reduction with HA, TES, and PTB were 1.7, 2.6, and 8 nm, respectively. The reduction of Au(III) was rapid with HA and PTB. TES proved to be a mild reducing agent for the synthesis of Au NPs. DLS measurements demonstrated swelling of the PS-b-P2VP micelles due to the incorporation of HAuCl4 and the reducing agents. The original micellar structure rearranged during the reduction with PTB. ITC measurements revealed that some chemical reactions besides Au NPs formation also occurred in the course of the reduction process. The enthalpy of formation of Au NPs in PS-b-P2VP micelles reduced by HA was determined.

Keywords

Gold nanoparticles Heat of nucleation Diblock copolymer Micellar solution Microcalorimetry 

Notes

Acknowledgements

The authors are very grateful for the financial support of the MÖB-DAAD project no. 14.

References

  1. 1.
    Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104:293–346.CrossRefGoogle Scholar
  2. 2.
    Haruta M. Gold as a novel catalyst in the 21st century: preparation, working mechanism and applications. Gold Bull. 2004;37:27–36.Google Scholar
  3. 3.
    El-Sayed IH, Huang XH, El-Sayed MA. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett. 2005;5:829–34.CrossRefGoogle Scholar
  4. 4.
    Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth of processes in the synthesis of colloidal gold. Discuss Trans Faraday Soc. 1951;11:55–75.CrossRefGoogle Scholar
  5. 5.
    Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R. Synthesis of thiol derivatised gold nanoparticles in a two phase liquid/liquid system. J Chem Soc Chem Commun. 1994;7:801–2.CrossRefGoogle Scholar
  6. 6.
    Teranishi T, Kiyokawa I, Miyake M. Synthesis of monodisperse gold nanoparticles using linear polymers as protective agents. Adv Mater. 1998;10:596–9.CrossRefGoogle Scholar
  7. 7.
    Esumi K, Hara J, Aihara N, Usui K, Torigoe K. Preparation of anisotropic gold particles using a gemini surfactant template. J Colloid Interface Sci. 1998;208:578–81.CrossRefGoogle Scholar
  8. 8.
    Ji X, Song X, Li J, Bai Y, Yang W, Peng X. Size control of gold nanocrystals in citrate reduction: the third role of citrate. J Am Chem Soc. 2007;129:13939–48.CrossRefGoogle Scholar
  9. 9.
    Henglein A. Radiolytic preparation of ultrafine colloidal gold particles in aqueous solution: optical spectrum, controlled growth, and some chemical reactions. Langmuir. 1999;15:6738–44.CrossRefGoogle Scholar
  10. 10.
    Jana NR, Gearheart L, Murphy CJ. Evidence for seed-mediated nucleation in the formation of gold nanoparticles from gold salts. Chem Mater. 2001;13:2313–22.CrossRefGoogle Scholar
  11. 11.
    Bakrania SD, Rathore GK, Wooldridge MS. An investigation of the thermal decomposition of gold acetate. J Therm Anal Calorim. 2009;95:117–22.CrossRefGoogle Scholar
  12. 12.
    Privman V, Goia DV, Park J, Matijević E. Mechanism of formation of monodispersed colloids by aggregation of nanosize precursors. J Colloid Interface Sci. 1999;213:36–45.CrossRefGoogle Scholar
  13. 13.
    Alvarez MM, Khoury JT, Schaaff TG, Shafigullin MN, Vezmar I, Whetten RL. Optical absorption spectra of nanocrystal gold molecules. J Phys Chem B. 1997;101:3706–12.CrossRefGoogle Scholar
  14. 14.
    Mie G. Beitrage zur Optik Truber Medien, Speziell Kolloidaler Metallosungen. Ann Phys. 1908;25:377–445.CrossRefGoogle Scholar
  15. 15.
    Sato S, Toda K, Oniki S. Kinetic study on the formation of colloidal gold in the presence of acetylenic glycol nonionic surfactant. J Colloid Interface Sci. 1999;218:504–10.CrossRefGoogle Scholar
  16. 16.
    Yang S, Wang Y, Wang Q, Zhang R, Ding B. UV irradiation induced formation of Au nanoparticles at room temperature: the case of pH values. Colloids Surf A. 2007;301:174–83.CrossRefGoogle Scholar
  17. 17.
    Patakfalvi R, Papp S, Dékány I. The kinetics of homogeneous nucleation of silver nanoparticles stabilized by polymers. J Nanopart Res. 2007;9:353–64.CrossRefGoogle Scholar
  18. 18.
    Papp S, Dekany I. Nucleation and growth of palladium nanoparticles stabilized by polymers and layer silicates. Colloid Polym Sci. 2006;284:1049–56.CrossRefGoogle Scholar
  19. 19.
    Mössmer S, Spatz JP, Möller M, Aberle T, Schmidt J, Burchard W. Solution behavior of poly(styrene)-block-poly(2-vinylpyridine) micelles containing gold nanoparticles. Macromolecules. 2000;33:4791–8.CrossRefGoogle Scholar
  20. 20.
    Sidorov SN, Bronstein LM, Kabachii YA, Valetsky PM, Lim Soo P, Maysinger D, et al. Influence of metalation on the morphologies of poly(ethylene oxide)-block-poly(4-vinylpyridine) block copolymer micelles. Langmuir. 2004;20:3543–50.CrossRefGoogle Scholar
  21. 21.
    Meristoudi A, Pispas S, Vainosi N. Self-assembly in solutions of block and random copolymers during metal nanoparticle formation. J Polym Sci B. 2008;46:1515–24.CrossRefGoogle Scholar
  22. 22.
    Arcoleo V, Cavallaro G, Manna GL, Liveri VT. Calorimetric investigation on the formation of palladium nanoparticles in water/AOT/n-heptane microemulsions. Thermochim Acta. 1995;254:111–9.CrossRefGoogle Scholar
  23. 23.
    Aliotta F, Arcoleo V, Buccoleri S, La Manna G, Liveri VT. Calorimetric investigation on the formation of gold nanoparticles in water/AOT/n-heptane microemulsions. Thermochim Acta. 1995;265:15–23.CrossRefGoogle Scholar
  24. 24.
    Patakfalvi R, Dékány I. Nucleation and growing of silver nanoparticles under control of titration microcalorimetric experiment. J Therm Anal Calorim. 2005;79:587–94.CrossRefGoogle Scholar
  25. 25.
    Kanemaru M, Shiraishi Y, Koga Y, Toshima N. Calorimetric study on self-assembling of two kinds of monometallic nanoparticles in solution. J Therm Anal Calorim. 2005;81:523–7.CrossRefGoogle Scholar
  26. 26.
    Seregina MV, Bronstein LM, Platonova OA, Chernyshov DM, Valetsky PM, Hartmann J, et al. Preparation of noble-metal colloids in block copolymer micelles and their catalytic properties in hydrogenation. Chem Mater. 1997;9:923–31.CrossRefGoogle Scholar
  27. 27.
    Antonietti M, Wenz E, Bronstein L, Seregina M. Synthesis and characterization of noble metal colloids in block copolymer micelles. Adv Mater. 1995;7:1000–5.CrossRefGoogle Scholar
  28. 28.
    Spatz JP, Sheiko S, Moller M. Ion-stabilized block copolymer micelles: film formation and intermicellar interaction. Macromolecules. 1996;29:3220–6.CrossRefGoogle Scholar
  29. 29.
    Saptz JP, Mössmer S, Hartmann C, Möller M, Herzog T, Krieger M, et al. Ordered deposition of inorganic clusters from micellar block copolymer films. Langmuir. 2000;16:407–15.CrossRefGoogle Scholar
  30. 30.
    Yoon NM, Yang HS, Hwang YS. Reducing characteristics of potassium triethylborohydride. Bull Korean Chem Soc. 1987;8:285–91.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • S. Papp
    • 1
  • L. Kőrösi
    • 1
  • B. Gool
    • 2
  • T. Dederichs
    • 2
  • P. Mela
    • 2
  • M. Möller
    • 2
  • I. Dékány
    • 1
    • 3
  1. 1.Supramolecular and Nanostructured Materials Research Group of the Hungarian Academy of SciencesUniversity of SzegedSzegedHungary
  2. 2.Deutsches Wollforschungsinstitut (DWI) an der RWTH-AachenAachenGermany
  3. 3.Department of Physical Chemistry and Material SciencesUniversity of SzegedSzegedHungary

Personalised recommendations