Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 100, Issue 1, pp 109–116 | Cite as

Thermogravimetric analysis and hot-stage Raman spectroscopy of cubic indium hydroxide

  • Jing Yang
  • Ray L. Frost
  • Wayde N. Martens
Article

Abstract

The transition of cubic indium hydroxide to cubic indium oxide has been studied by thermogravimetric analysis complimented with hot-stage Raman spectroscopy. Thermal analysis shows the transition of In(OH)3 to In2O3 occurs at 219 °C. The structure and morphology of In(OH)3 synthesised using a soft chemical route at low temperatures was confirmed by X-ray diffraction and scanning electron microscopy. A topotactical relationship exists between the micro/nano-cubes of In(OH)3 and In2O3. The Raman spectrum of In(OH)3 is characterised by an intense sharp band at 309 cm−1 attributed to ν1 In–O symmetric stretching mode, bands at 1137 and 1155 cm−1 attributed to In-OH δ deformation modes, bands at 3083, 3215, 3123 and 3262 cm−1 assigned to the OH stretching vibrations. Upon thermal treatment of In(OH)3, new Raman bands are observed at 125, 295, 488 and 615 cm−1 attributed to In2O3. Changes in the structure of In(OH)3 with thermal treatment is readily followed by hot-stage Raman spectroscopy.

Keywords

Thermogravimetry Hot-stage Raman spectroscopy Indium hydroxide Indium oxide 

Notes

Acknowledgements

The financial and infra-structure support from the Queensland University of Technology Inorganic Materials Research Program is gratefully acknowledged. The Australian Research Council (ARC) is thanked for funding the instrumentation. One of the authors (JY) is grateful to the Queensland University of Technology Inorganic Materials Research Program for the award of an international doctoral scholarship.

References

  1. 1.
    Zhuang Z, Peng Q, Liu L, Wang X, Li Y. Indium hydroxides, oxyhydroxides, and oxides nanocrystals series. Inorg Chem. 2007;49:5179–87.CrossRefGoogle Scholar
  2. 2.
    Bayon R, Mafftiotte C, Herrero J. Chemical bath deposition of indium hydroxy sulphide thin films: process and XPS characterization. Thin Solid Films. 1999;353:100–7.CrossRefGoogle Scholar
  3. 3.
    Bayon R, Herrero J. Reaction mechanism and kinetics for the chemical bath deposition of In(OH)(x)S-y thin films. Thin Solid Films. 2001;387:111–4.CrossRefGoogle Scholar
  4. 4.
    Lei ZB, Ma GJ, Liu MY, You WS, Yan HJ, Wu GP, et al. Sulfur-substituted and zinc-doped In(OH)(3): a new class of catalyst for photocatalytic H-2 production from water under visible light illumination. J Catal. 2006;237:322–9.CrossRefGoogle Scholar
  5. 5.
    Su CH, Palosz W, Zhu S, Lehoczky SL, Grzegory I, Perlin P, et al. Energy gap in GaN bulk single crystal between 293 and 1237 K. J Cryst Growth. 1237;235(2002):111–4.Google Scholar
  6. 6.
    Du JM, Yang M, Cha SN, Rhen D, Kang M, Kang DJ. Indium hydroxide and indium oxide nanospheres, nanoflowers, micro/nano-cubes, and nanorods: synthesis and optical properties. Cryst Growth Des. 2008;8:2312–7.CrossRefGoogle Scholar
  7. 7.
    Kim H, Horwitz JS, Kushto GP, Qadri SB, Kafafi ZH, Chrisey DB. Transparent conducting Zr-doped In2O3 thin films for organic light-emitting diodes. Appl Phys Lett. 2001;78:1050–2.CrossRefGoogle Scholar
  8. 8.
    Katoh R, Furube A, Yoshihara T, Hara K, Fujihashi G, Takano S, et al. Efficiencies of electron injection from excited N3 dye into nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) films. J Phys Chem B. 2004;108:4818–22.CrossRefGoogle Scholar
  9. 9.
    Zhang DH, Liu ZQ, Li C, Tang T, Liu XL, Han S, et al. Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett. 2004;4:1919–24.CrossRefGoogle Scholar
  10. 10.
    Curreli M, Li C, Sun YH, Lei B, Gundersen MA, Thompson ME, et al. Selective functionalization of In2O3 nanowire mat devices for biosensing applications. J Am Chem Soc. 2005;127:6922–3.CrossRefGoogle Scholar
  11. 11.
    Zhuang ZB, Peng Q, Liu JF, Wang X, Li YD. Indium hydroxides, oxyhydroxides, and oxides nanocrystals series. Inorg Chem. 2007;46:5179–87.CrossRefGoogle Scholar
  12. 12.
    Li C, Zhang DH, Han S, Liu XL, Tang T, Zhou CW. Diameter-controlled growth of single-crystalline In2O3 nanowires and their electronic properties. Adv Mater. 2003;15:143–6.CrossRefGoogle Scholar
  13. 13.
    Pan ZW, Dai ZR, Wang ZL. Nanobelts of semiconducting oxides. Science. 2001;291:1947–9.CrossRefGoogle Scholar
  14. 14.
    Yang J, Lin CK, Wang ZL, Lin J. In(OH)(3) and In2O3 nanorod bundles and spheres: microemulsion-mediated hydrothermal synthesis and luminescence properties. Inorg Chem. 2006;45:8973–9.CrossRefGoogle Scholar
  15. 15.
    Chen CL, Chen DR, Jiao XL, Wang CQ. Ultrathin corundum-type In2O3 nanotubes derived from orthorhombic InOOH: synthesis and formation mechanism. Chem Commun. 2006;4632–4.Google Scholar
  16. 16.
    Li BX, Xie Y, Jing M, Rong GX, Tang YC, Zhang GZ. In2O3 hollow microspheres: synthesis from designed in (OH)(3) precursors and applications in gas sensors and photocatalysis. Langmuir. 2006;22:9380–5.CrossRefGoogle Scholar
  17. 17.
    Liu XH, Zhou LB, Yi R, Zhang N, Shi RR, Gao GH, et al. Single-crystalline indium hydroxide and indium oxide micro/nano-cubes: synthesis and characterization. J Phys Chem C. 2008;112:18426–30.Google Scholar
  18. 18.
    Dong H-X, Yang H-Q, Yin W-Y, Yang W-Y, Wang L-F. Controlled synthesis of octahedron, nanobelts, dentate nanowires and nanocrystal chains of In2O3. Huaxue Xuebao. 2007;65:2611–7.Google Scholar
  19. 19.
    Du J, Yang M, Cha SN, Rhen D, Kang M, Kang DJ. Indium hydroxide and indium oxide nanospheres, nanoflowers, micro/nano-cubes, and nanorods: synthesis and optical properties. Cryst Growth Des. 2008;8:2312–7.CrossRefGoogle Scholar
  20. 20.
    Wang C, Chen D, Jiao X, Chen C. Lotus-root-like In2O3 nanostructures: fabrication, characterization, and photoluminescence properties. J Phys Chem C. 2007;111:13398–403.CrossRefGoogle Scholar
  21. 21.
    Zhu H, Yao K, Zhang H, Yang D. InOOH hollow spheres synthesized by a simple hydrothermal reaction. J Phys Chem B. 2005;109:20676–9.CrossRefGoogle Scholar
  22. 22.
    Frost RL, Hales MC, Martens WN. Thermogravimetric analysis of selected group (II) carbonate minerals—implication for the geosequestration of greenhouse gases. J Therm Anal Calorim. 2009;95:999–1005.CrossRefGoogle Scholar
  23. 23.
    Palmer SJ, Spratt HJ, Frost RL. Thermal decomposition of hydrotalcites with variable cationic ratios. J Therm Anal Calorim. 2009;95:123–9.CrossRefGoogle Scholar
  24. 24.
    Carmody O, Frost R, Xi Y, Kokot S. Selected adsorbent materials for oil-spill cleanup. A thermoanalytical study. J Therm Anal Calorim. 2008;91:809–16.CrossRefGoogle Scholar
  25. 25.
    Frost RL, Locke A, Martens WN. Thermogravimetric analysis of wheatleyite Na2Cu2 + (C2O4)2·2H2O. J Therm Anal Calorim. 2008;93:993–7.CrossRefGoogle Scholar
  26. 26.
    Frost RL, Locke AJ, Hales MC, Martens WN. Thermal stability of synthetic aurichalcite. Implications for making mixed metal oxides for use as catalysts. J Therm Anal Calorim. 2008;94:203–8.CrossRefGoogle Scholar
  27. 27.
    Frost RL, Locke AJ, Martens W. Thermal analysis of beaverite in comparison with plumbojarosite. J Therm Anal Calorim. 2008;92:887–92.CrossRefGoogle Scholar
  28. 28.
    Frost RL, Wain D. A thermogravimetric and infrared emission spectroscopic study of alunite. J Therm Anal Calorim. 2008;91:267–74.CrossRefGoogle Scholar
  29. 29.
    Hales MC, Frost RL. Thermal analysis of smithsonite and hydrozincite. J Therm Anal Calorim. 2008;91:855–60.CrossRefGoogle Scholar
  30. 30.
    Palmer SJ, Frost RL, Nguyen T. Thermal decomposition of hydrotalcite with molybdate and vanadate anions in the interlayer. J Therm Anal Calorim. 2008;92:879–86.CrossRefGoogle Scholar
  31. 31.
    Vagvoelgyi V, Daniel LM, Pinto C, Kristof J, Frost RL, Horvath E. Dynamic and controlled rate thermal analysis of attapulgite. J Therm Anal Calorim. 2008;92:589–94.CrossRefGoogle Scholar
  32. 32.
    Vagvoelgyi V, Hales M, Frost RL, Locke A, Kristof J, Horvath E. Conventional and controlled rate thermal analysis of nesquehonite Mg(HCO3)(OH)·2(H2O). J Therm Anal Calorim. 2008;94:523–8.CrossRefGoogle Scholar
  33. 33.
    Vagvolgyi V, Daniel LM, Pinto C, Kristof J, Frost RL, Horvath E. Dynamic and controlled rate thermal analysis of attapulgite. J Therm Anal Calorim. 2008;92:589–94.CrossRefGoogle Scholar
  34. 34.
    Vagvolgyi V, Frost RL, Hales M, Locke A, Kristof J, Horvath E. Controlled rate thermal analysis of hydromagnesite. J Therm Anal Calorim. 2008;92:893–7.CrossRefGoogle Scholar
  35. 35.
    Vagvolgyi V, Hales M, Martens W, Kristof J, Horvath E, Frost RL. Dynamic and controlled rate thermal analysis of hydrozincite and smithsonite. J Therm Anal Calorim. 2008;92:911–6.CrossRefGoogle Scholar
  36. 36.
    Zhao Y, Frost RL, Vagvolgyi V, Waclawik ER, Kristof J, Horvath E. XRD, TEM and thermal analysis of yttrium doped boehmite nanofibres and nanosheets. J Therm Anal Calorim. 2008;94:219–26.CrossRefGoogle Scholar
  37. 37.
    Zhao Y, Yang J, Frost RL. Raman spectroscopy of the transition of alpha-gallium oxyhydroxide to beta-gallium oxide nanorods. J Raman Spectrosc. 2008;39:1327–31.CrossRefGoogle Scholar
  38. 38.
    Liu D, Lei WW, Zou B, Yu SD, Hao J, Wang K, Liu BB, Cui QL, Zou GT. High-pressure X-ray diffraction and Raman spectra study of indium oxide. J Appl Phys. 2008;104:083506/083501–505.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  1. 1.Inorganic Materials Research Program, School of Physical and Chemical SciencesQueensland University of TechnologyBrisbaneAustralia

Personalised recommendations