Journal of Thermal Analysis and Calorimetry

, Volume 99, Issue 1, pp 263–268 | Cite as

Thermal and structural properties of commercial dental resins light-cured with blue emitting diodes (LEDs)

  • S. S. Rojas
  • G. J. M. Frigo
  • M. I. B. Bernardi
  • A. N. de S. Rastelli
  • A. C. Hernandes
  • V. S. Bagnato
Article

Abstract

We have investigated the thermal and structural properties of different commercial dental resins: FiltekTM Z-350, Grandio®, Tetric Ceram®, and TPH Spectrum®. The purpose of the present study was to evaluate quantitatively the photo-polymerization behavior and the effect of filler contents on the kinetic cures of the dental resins by using Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FT-IR) techniques. We have successfully obtained the low and high glass transition Tg values of the dental composite resins from DSC curves. It was also observed a good agreement between the both Tg values, activation energies from thermal degradation, and the degree of conversion obtained for all samples. The results have shown that Tetric Ceram® dental resin presented the higher Tg values, activation energy of 215 ± 6 KJ mol−1, and the higher degree of conversion (63%) when compared to the other resins studied herein.

Keywords

Degradation Dental resins DSC FT-IR Thermal analysis 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support of the Brazilian financing agencies FAPESP, CNPq, PRONEX/FINEP, and CAPES.

References

  1. 1.
    Antonucci JM, Stansbury JW. In: Arshady R, editor. Desk reference of functional polymers. Washington, DC: American Chemical Society; 1997.Google Scholar
  2. 2.
    Moszner N, Salz U. New development of polymeric dental composites. Prog Polym Sci. 2001;26:535–76.CrossRefGoogle Scholar
  3. 3.
    Gatti A, Rastelli ANS, Ribeiro SJL, Messaddeq Y, Bagnato VS. Polymerization of photocurable commercial dental methacrylate-based composites—Photocalorimetry study. J Therm Anal Calorim. 2007;87:631–4.CrossRefGoogle Scholar
  4. 4.
    Wilson KS, Zhanga K, Antonuccia JM. Systematic variation of interfacial phase reactivity in dental composites. Biomaterials. 2005;26:5095–103.CrossRefGoogle Scholar
  5. 5.
    Masouras K, Silikas N, Watt DC. Correlation of filler content and elastic properties of resin-composites. Dent Mater. 2008;24:932–9.CrossRefGoogle Scholar
  6. 6.
    Conti C, et al. Spectroscopic and mechanical properties of dental resin composites cured with different light sources. J Mol Struct. 2005;744–747:641–6.CrossRefGoogle Scholar
  7. 7.
    Anseth KS, Newman SM, Bowman CN. Polymerization kinetics and volume relaxation behavior of photopolymerized multifunctional monomers producing highly crosslinked network. Adv Polym Sci. 1995;122:177–217.Google Scholar
  8. 8.
    Watts DC. Reaction kinetics and mechanics in photo-polymerised networks. Dent Mater. 2005;21:27–35.CrossRefGoogle Scholar
  9. 9.
    Ferracane JL, Berge HX, Condon JR. In vitro aging of dental composites in water—effect of degree of conversion, filler volume, and filler/matrix coupling. J Biomed Mater Res. 1998;42:465–72.CrossRefGoogle Scholar
  10. 10.
    Li Y, Swartz ML, Phillips RW, Moore BK, Roberts TA. Materials science effect of filler content and size on properties of composites. J Dent Res. 1985;64:1396–401.Google Scholar
  11. 11.
    Lim BS, Ferracane JL, Condon JR, Adey JD. Effect of filler fraction and filler surface treatment on wear of microfilled composites. Dent Mater. 2002;18:1–11.CrossRefGoogle Scholar
  12. 12.
    Razak AA, Harrison A. The effect of filler content and processing variables on dimensional accuracy of experimental composite inlay material. J Prosthet Dent. 1997;77:353–8.CrossRefGoogle Scholar
  13. 13.
    Soderholm KJ. Influence of silane treatment and filler fraction on thermal expansion of composite resins. J Dent Res. 1984;63:1321–6.Google Scholar
  14. 14.
    Mohsen NM, Craig RG, Filisko FE. Effects of curing time and filler concentration on curing and postcuring of urethane dimethacrylate composites: a microcalorimetric study. J Biomed Mater Res. 1998;40:224–32.CrossRefGoogle Scholar
  15. 15.
    Lee JK, Choi JY, Lim BS, Lee Y, Sakaguchi RL. Change of properties during storage of a UDMA/TEGDMA dental resin. J Biomed Mater Res B Appl Biomater. 2004;68B:216–21.CrossRefGoogle Scholar
  16. 16.
    Tanimoto Y, Hayakawa T, Nemoto K. Analysis of photopolymerization behavior of UDMA/TEGDMA resin mixture and its composite by differential scanning calorimetry. J Biomed Mater Res B Appl Biomater. 2005;72B:310–5.CrossRefGoogle Scholar
  17. 17.
    Rastelli ANS, Jacomassi DP, Bagnato VS. Effect of power densities and irradiation times on the degree of conversion and temperature increase of a microhybrid dental composite resin. Laser Phys. 2008;18:1074–9.CrossRefGoogle Scholar
  18. 18.
    Achilias DS, Karabela MM, Sideridou ID. Thermal degradation of light-cured dimethacrylate resins: part I. Isoconversional kinetic analysis. Thermochim Acta. 2008;472:74–83.CrossRefGoogle Scholar
  19. 19.
    Bernardi MIB, Rojas SS, Andreeta MRB, Rastelli ANS, Hernandes AC, Bagnato VS. Thermal analysis and structural investigation of different dental composites resins. J Therm Anal Calorim. 2008;94:791–6.CrossRefGoogle Scholar
  20. 20.
    Kanbe H, Ozawa T. Thermal analysis. Tokyo: Kohdansha; 1992. p. 57–64.Google Scholar
  21. 21.
    Hatakeyama T, Quinn FX. Thermal analysis—fundamentals and applications to polymer science. 2nd ed. New York: Wiley; 1999. p. 82–4.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • S. S. Rojas
    • 1
  • G. J. M. Frigo
    • 1
  • M. I. B. Bernardi
    • 1
  • A. N. de S. Rastelli
    • 2
  • A. C. Hernandes
    • 1
  • V. S. Bagnato
    • 2
  1. 1.Grupo Crescimento de Cristais e Materiais Cerâmicos, Instituto de Física de São CarlosUniversidade de São PauloSão CarlosBrazil
  2. 2.Grupo de Óptica, Instituto de Física de São CarlosUniversidade de São PauloSão CarlosBrazil

Personalised recommendations