The use of DMTA for predicting standard mechanical properties of developmental polyolefins

  • M. Gahleitner
  • C. Grein
  • K. Bernreitner
  • B. Knogler
  • E. Hebesberger


The correlation of linear data from dynamic-mechanical testing (DMTA) to nonlinear data from standard mechanical testing was attempted for a number of quite different polypropylene-based compositions. For limited composition ranges, correlations between storage modulus and stiffness as well as between loss angle integrals and impact strength could be achieved. Challenges in trying to correlate DMTA tests to standard mechanics clearly result from morphology effects at different scales, both in crystallinity and flow-induced superstructures (orientation) and in multiphase impact copolymers or composites. While a relative scaling turned out to be easy, absolute prediction is difficult.


Dynamic-mechanical analysis Polypropylene Impact strength Nanocomposite Glass transition Aging 


  1. 1.
    Hoogenboom R, Meier MAR, Schubert US. Combinatorial methods, automated synthesis and high-throughput screening in polymer research: past and present. Macromol Rapid Commun. 2003;24:15–32.CrossRefGoogle Scholar
  2. 2.
    Tuchbreiter A, Muehlhaupt RA. The polyolefin challenges: catalyst and process design, tailor-made materials, high-throughput development and data mining. Macromol Symp. 2001;173:1–20.CrossRefGoogle Scholar
  3. 3.
    Arriola DJ, Carnahan EM, Hustad PD, Kuhlman RL, Wenzel TT. Catalytic production of olefin block copolymers via chain shuttling polymerization. Science. 2006;312:714–9.CrossRefGoogle Scholar
  4. 4.
    Chen M, Wan C, Shou W, Zhang Y, Zhang Y, Zhang R. Effects of interfacial adhesion on properties of polypropylene/wollastonite composites. J Appl Polym Sci. 2008;107:1718–23.CrossRefGoogle Scholar
  5. 5.
    Fiebig J, Gahleitner M, Paulik C, Wolfschwenger. Ageing of polypropylene: processes and consequences. J Polym Test. 1999;18:257–66.CrossRefGoogle Scholar
  6. 6.
    Gahleitner M, Fiebig J, Wolfschwenger J, Dreiling G, Paulik C. Post-crystallization and physical ageing of polypropylene: material and processing effects. J Macromol Sci Phys. 2002;B41:833–49.Google Scholar
  7. 7.
    Peng Y, Zhang Q, Du R, Fu Q. Crystallization kinetics and tensile modulus of blends of metallocene short-chain branched polyethylene with conventional polyolefins. J Appl Polym Sci. 2005;96:1816–23.CrossRefGoogle Scholar
  8. 8.
    Wang R, Li GX, Yang Q. Effects of blending sequence on properties of ternary polyolefin blends. Plast Rubb Comp. 2007;36:314–9.CrossRefGoogle Scholar
  9. 9.
    Grein C, Bernreitner K, Gahleitner M. Potential and limits of dynamic mechanical analysis as a tool for fracture resistance evaluation of isotactic polypropylenes and their polyolefin blends. J Appl Polym Sci. 2004;93:1854–67.CrossRefGoogle Scholar
  10. 10.
    Aarnio M. Structure property relationships of heterophasic ethylene-propylene copolymers. MSc Thesis, Helsinki Universito of Technology, December 2007.Google Scholar
  11. 11.
    Jancar J, DiAnselmo A, DiBenedetto AT, Kucera J. Failure mechanics in elastomer toughened polypropylene. Polymer. 1993;34:1684–94.CrossRefGoogle Scholar
  12. 12.
    Tranchida D, Piccarolo S, Soliman M. Nanoscale mechanical characterization of polymers by AFM nanoindentations: critical approach to the elastic characterization. Macromolecules. 2006;39:4547–56.CrossRefGoogle Scholar
  13. 13.
    Labour T, Ferry L, Gauthier C, Hajji P, Vigier G. α- and β-crystalline forms of isotactic polypropylene investigated by nanoindentation. J Appl Polym Sci. 1999;74:195–200.CrossRefGoogle Scholar
  14. 14.
    Reichelt N, Pham T, Gahleitner M. EP 1589070 A1. Polymer composition with improved stiffness and impact strength. Borealis Technology Oy; 2000.Google Scholar
  15. 15.
    Poelt P, Ingolic E, Gahleitner M, Bernreitner K, Geymayer W. Characterization of modified polypropylene by scanning electron microscopy. J Appl Polym Sci. 2000;78:1152–61.CrossRefGoogle Scholar
  16. 16.
    Grein C, Bernreitner K, Hauer A, Gahleitner M, Neissl W. Impact modified isotatic polypropylene with controlled rubber intrinsic viscosities: some new aspects about morphology and fracture. J Appl Polym Sci. 2003;87:1702–12.CrossRefGoogle Scholar
  17. 17.
    Grein C, Gahleitner M, Knogler B, Nestelberger S. Melt viscosity effects in ethylene-propylene copolymers. Rheol Acta. 2007;46:1435–44.CrossRefGoogle Scholar
  18. 18.
    Molnàr S, Pukànszky B, Hammer CO, Maurer FHJ. Impact fracture study of multicomponent polypropylene composites. Polymer. 2000;41:1529–39.CrossRefGoogle Scholar
  19. 19.
    Thio YS, Argon AS, Cohen RE, Weinberg M. Toughening of isotactic polypropylene with CaCO3 particles. Polymer. 2002;43:3661–74.CrossRefGoogle Scholar
  20. 20.
    Gahleitner M, Grein C, Hauer A. Motha K. Application of dynamic-mechanical analysis for prediction of mechanical performance of polypropylene composites. Procceedings of PPS Europe-Africa conference 2003, Athens, Greece, Lecture 11-A1-O (CD-ROM).Google Scholar
  21. 21.
    Zia Q, Mileva D, Androsch R. Rigid amorphous fraction in isotactic polypropylene. Macromolecules. 2008;41:8095–102.CrossRefGoogle Scholar
  22. 22.
    Grein C, Gahleitner M. On the influence of nucleation on the toughness of iPP/EPR blends with different rubber molecular architectures. Express Polym Lett. 2008;6:392–7.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • M. Gahleitner
    • 1
  • C. Grein
    • 1
  • K. Bernreitner
    • 1
  • B. Knogler
    • 1
  • E. Hebesberger
    • 1
  1. 1.Borealis Polyolefine GmbHLinzAustria

Personalised recommendations