Journal of Thermal Analysis and Calorimetry

, Volume 99, Issue 1, pp 123–138

Resolution of problems in soft matter dynamics by combining calorimetry and other spectroscopies

  • K. L. Ngai
  • S. Capaccioli
  • M. Shahin Thayyil
  • N. Shinyashiki


In several current important problems in different areas of soft matter physics, controversy persists in interpreting the molecular dynamics observed by various spectroscopies including dielectric relaxation, light scattering, nuclear magnetic resonance, and neutron scattering. Outstanding examples include: (1) relaxation of water in aqueous mixtures, in molecular sieves and silica-gel nanopores, and in hydration shell of proteins; and (2) dynamics of each component in binary miscible polymer blends, in mixtures of an amorphous polymer with a small molecular glassformer, and in binary mixtures of two small molecular glassformers. We show the applications of calorimetry to these problems have enhanced our understanding of the dynamics and eliminated the controversies.


Glass transition Thermal analysis Adiabatic calorimetry Water Aqueous mixtures Water in nano-confinement Hydration water Hydrated protein Polymer blends Polymer solutions 


  1. 1.
    Capaccioli S, Ngai KL, Shinyashiki N. The Johari-Goldstein β-relaxation of water. J Phys Chem B. 2007;111:8197–209.CrossRefGoogle Scholar
  2. 2.
    Mierzwa M, Pawlus S, Paluch M, Kaminska E, Ngai KL. Correlation between primary and secondary Johari–Goldstein relaxations in supercooled liquids: invariance to changes in thermodynamic conditions. J Chem Phys. 2008;128:044512.CrossRefGoogle Scholar
  3. 3.
    Kessairi K, Capaccioli S, Prevosto D, Lucchesi M, Sharifi S, Rolla PA. Interdependence of primary and Johari-Goldstein secondary relaxations in glass-forming systems. J Phys Chem B. 2008;112:4470–3.CrossRefGoogle Scholar
  4. 4.
    Capaccioli S, Prevosto D, Lucchesi M, Rolla PA, Casalini R, Ngai KL. Identifying the genuine Johari-Goldstein β-relaxation by cooling, compressing, and aging small molecular glass-formers. J Non-Cryst Solids. 2005;351:2643–51.CrossRefGoogle Scholar
  5. 5.
    Capaccioli S, Kessairi K, Prevosto D, Lucchesi M, Rolla PA. Correlation of structural, Johari-Goldstein relaxations in systems vitrifying along isobaric, isothermal paths. J Phys Condens Matter. 2007;19:205133.CrossRefGoogle Scholar
  6. 6.
    Ngai KL. An extended coupling model description of the evolution of dynamics with time in supercooled liquids and ionic conductors. J Phys Condens Matter. 2003;15:S1107–25.CrossRefGoogle Scholar
  7. 7.
    Ngai KL, Paluch M. Classification of secondary relaxation in glass-formers based on dynamic properties. J Chem Phys. 2004;120:857.CrossRefGoogle Scholar
  8. 8.
    Jansson H, Swenson J. Dynamics of water in molecular sieves by dielectric spectroscopy. Eur Phys J E. 2003;12:S51–4.CrossRefGoogle Scholar
  9. 9.
    Bergman R, Swenson J. Dynamics of supercooled water in confined geometry. Nature. 2000;403:283–6.CrossRefGoogle Scholar
  10. 10.
    Swenson J, Jansson H, Howells WS, Longeville S. Dynamics of water in a molecular sieve by quasielastic neutron scattering. J Chem Phys. 2005;122:084505.CrossRefGoogle Scholar
  11. 11.
    Hedström J, Swenson J, Bergman R, Jansson H, Kittaka S. Does confined water exhibit a fragile-to-strong transition? Eur Phys J. Special Topics. 2007;141:53–6.Google Scholar
  12. 12.
    Faraone A, Liu L, Mou C-Y, Yen C-W, Chen S-H. Fragile-to-strong liquid transition in deeply supercooled confined water. J Chem Phys. 2004;121:10843–6.CrossRefGoogle Scholar
  13. 13.
    Liu L, Chen S-H, Faraone A, Yen C-W, Mou C-Y. Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water. Phys Rev Lett. 2005;95:117802.CrossRefGoogle Scholar
  14. 14.
    Mallamace F, Broccio M, Corsaro C, Farone A, Wanderlingh U, Liu L, et al. The fragile-to-strong dynamic crossover transition in confined water: nuclear magnetic resonance results. J Chem Phys. 2006;124:161102.CrossRefGoogle Scholar
  15. 15.
    Swenson J. Comment on “Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water. Phys Rev Lett. 2006;97:189801.CrossRefGoogle Scholar
  16. 16.
    Oguni M, Maruyama S, Wakabayashi K, Nagoe A. Glass transitions of ordinary and heavy water within silica-gel nanopores. Chem Asian J. 2007;2:514–20.CrossRefGoogle Scholar
  17. 17.
    Debenedetti PG. Supercooled and glassy water. J Phys Condens Matter. 2003;15:R1669–726.CrossRefGoogle Scholar
  18. 18.
    Oguni M, Kanke Y, Namba S. Thermal properties of the water confined within nanopores of silica MCM-41. AIP Conf Proc. 2008;982:34.CrossRefGoogle Scholar
  19. 19.
    Cammarata M, Levantino M, Cupane A, Longo A, Martorana A, Bruni F. Structure and dynamics of water confined in silica hydrogels: X-ray scattering and dielectric spectroscopy studies. Eur Phys J E. 2003;12:S63–6.CrossRefGoogle Scholar
  20. 20.
    Pathmanathan K, Johari GP. Dielectric and conductivity relaxations in Poly(hema) and of water in its hydrogel. J Polym Sci B. 1990;28:675–89.CrossRefGoogle Scholar
  21. 21.
    Pathmanathan K, Johari GP. Relaxation and crystallization of water in a hydrogel. J Chem Soc Faraday Trans. 1994;90:1143.CrossRefGoogle Scholar
  22. 22.
    Hofer K, Mayer E, Johari GP. Glass liquid transition of water and ethylene-glycol solution in poly(2-hydroxyethyl methacrylate) hydrogel. J Phys Chem. 1990;94:2689–96.CrossRefGoogle Scholar
  23. 23.
    Hofer K, Mayer E, Johari GP. Glass liquid transition and calorimetric relaxation of glassy aqueous-solutions imbibed in poly(2-hydroxyethyl methacrylate)—a comparison with bulk behavior. J Phys Chem. 1991;95:7100.CrossRefGoogle Scholar
  24. 24.
    Johari GP, Hallbrucker A, Mayer E. The glass liquid transition of hyperquenched water. Nature. 1987;330:552–3.CrossRefGoogle Scholar
  25. 25.
    Johari GP, Hallbrucker A, Mayer E. Isotope effect on the glass-transition and crystallization of hyperquenched glassy water. J Chem Phys. 1990;92:6742–6.CrossRefGoogle Scholar
  26. 26.
    Johari GP, Astl G, Mayer E. Enthalpy relaxation of glassy water. J Chem Phys. 1990;92:809–10.CrossRefGoogle Scholar
  27. 27.
    Swenson J, Jansson H, Hedström J, Bergman R. Properties of hydration water, its role in protein dynamics. J Phys Condens Matter. 2007;19:205109.CrossRefGoogle Scholar
  28. 28.
    Shinyashiki N, Yamamoto W, Yokoyama A, Yoshinari T, Yagihara S, Kita R, Ngai KL, Capaccioli S. Glass transitions in aqueous solution of protein (bovine serum albumin). J Phys Chem B. 2009;113:14448.CrossRefGoogle Scholar
  29. 29.
    Kawai K, Suzuki T, Oguni M. Low-temperature glass transitions of quenched and annealed bovine serum albumin aqueous solutions. Biophys J. 2006;90:3732–8.CrossRefGoogle Scholar
  30. 30.
    Doster W, Settles M. Protein-water displacement distributions. Biochim Biophys Acta. 2005;1749:173–86.Google Scholar
  31. 31.
    Doster W. The dynamical transition of proteins, concepts and misconceptions. Eur Biophys J. 2008;37:591–602.CrossRefGoogle Scholar
  32. 32.
    Parak F, Knapp EW, Kucheida D. Protein dynamics Mössbauer spectroscopy on deoxymyoglobin crystals. J Mol Biol. 1982;161:177–94.CrossRefGoogle Scholar
  33. 33.
    Doster W, Cusak S, Petry W. Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature. 1989;337:754–6.CrossRefGoogle Scholar
  34. 34.
    Chen S-H, Liu L, Fratini E, Baglioni P, Faraone A, Mamontov E. Observation of fragile-to-strong dynamic crossover in protein hydration water. Proc Natl Acad Sci USA. 2006;103:9012–6.CrossRefGoogle Scholar
  35. 35.
    Khodadadi S, Pawlus S, Roh JH, Garcia Sakai V, Mamontov E, Sokolov AP. The origin of the dynamic transition in proteins. J Chem Phys. 2008;128:195106.CrossRefGoogle Scholar
  36. 36.
    Khodadadi S, Pawlus S, Sokolov AP. Influence of hydration on protein dynamics: combining dielectric and neutron scattering spectroscopy data. J Phys Chem B. 2008;112:14273–80.CrossRefGoogle Scholar
  37. 37.
    Tarek M, Tobias DJ. Role of protein-water hydrogen bond dynamics in the protein dynamical transition. Phys Rev Lett 2002;88:138101.Google Scholar
  38. 38.
    Ringe D, Petsko GA. The ‘glass transition’ in protein dynamics: what it is, why it occurs, and how to exploit it. Biophys Chem. 2003;105:667–80.CrossRefGoogle Scholar
  39. 39.
    Miyazaki Y, Matsuo T, Suga H. Low-temperature heat capacity and glassy behavior of lysozyme crystal. J Phys Chem B. 2000;104:8044–52.CrossRefGoogle Scholar
  40. 40.
    Teeter MM, Yamano A, Stec B, Mohanty U. On the nature of a glassy state of matter in a hydrated protein: relation to protein function. Proc Natl Acad Sci USA. 2001;98:11242–7.CrossRefGoogle Scholar
  41. 41.
    Zanotti J-M, Gibrat G, Bellissent-Funel M-C. Hydration water rotational motion as a source of configurational entropy driving protein dynamics. Crossovers at 150 and 220 K. Phys Chem Chem Phys. 2008;10:4865.CrossRefGoogle Scholar
  42. 42.
    Fenimore PW, Frauenfelder H, McMahon BH, Young RD. Bulk-solvent and hydration-shell fluctuations, similar to α- and β-fluctuations in glasses, control protein motions and functions. Proc Natl Acad Sci USA. 2004;101:14408–13.CrossRefGoogle Scholar
  43. 43.
    Ngai KL. Dynamic and thermodynamic properties of glass-forming substances. J Non-Cryst Solids. 2000;275:7–51.CrossRefGoogle Scholar
  44. 44.
    Casalini R, Ngai KL. Structural dependence of fast relaxation in glass-forming substances and correlation with the stretch exponent of the slow structural α-relaxation. J Non-Cryst Solids. 2001;293–295:318–26.CrossRefGoogle Scholar
  45. 45.
    Angell CA. Ten questions on glassformers, and a real space ‘excitations’ model with some answers on fragility and phase transitions. J Phys Condens Matter. 2000;12:6463–75.CrossRefGoogle Scholar
  46. 46.
    Sokolov AP, Kisliuk A, Novikov VN, Ngai KL. Observation of constant loss in fast relaxation spectra of polymers. Phys Rev B. 2001;63:172204.CrossRefGoogle Scholar
  47. 47.
    Kisliuk A, Novikov VN, Sokolov AP. Constant loss in Brillouin spectra of polymers. J Polym Sci B. 2002;40:201–9.CrossRefGoogle Scholar
  48. 48.
    Ngai KL. Why the fast relaxation in the picosecond to nanosecond time range can sense the glass transition. Philos Mag. 2004;84:1341–53.CrossRefGoogle Scholar
  49. 49.
    Capaccioli S, Shahin Thayyil M, Ngai KL. Critical issues of current research on the dynamics leading to glass transition. J Phys Chem B. 2008;112:16035–49.CrossRefGoogle Scholar
  50. 50.
    Ngai KL, Habasaki J, Leon C, Rivera A. Comparison of dynamics of ions in ionically conducting materials and dynamics of glass-forming substances: remarkable similarities. Z Phys Chem. 2005;219:47.Google Scholar
  51. 51.
    Nowaczyk A, Geil B, Hinze G, Böhmer R. Correlation of primary relaxations and high-frequency modes in supercooled liquids. II. Evidence from spin-lattice relaxation weighted stimulated-echo spectroscopy. Phys Rev E. 2006;74:041505.CrossRefGoogle Scholar
  52. 52.
    Lusceac S, Vogel MR, Herbers CR. 2H and 13C NMR studies on the temperature-dependent water and protein dynamics in hydrated elastin, myoglobin and collagen. arXiv:0904.4424v1 [cond-mat.soft]. Accessed 28 April 2009.Google Scholar
  53. 53.
    Döß A, Paluch M, Sillescu H, Hinze G. From strong to fragile glass formers: secondary relaxation in polyalcohols. Phys Rev Lett. 2002;88:095701.CrossRefGoogle Scholar
  54. 54.
    Morozov VN, Gevorkian SG. Low-temperature glass transition in proteins. Biopolymers. 1985;24:785.CrossRefGoogle Scholar
  55. 55.
    Ngai KL, Capaccioli S, Shinyashiki The N. Protein “glass” transition, the role of the solvent. J Phys Chem B. 2008;112:3826.CrossRefGoogle Scholar
  56. 56.
    Ngai KL, Capaccioli S, Shinyashiki N, Shahin Thayyil M. Recent progress in understanding relaxation in complex systems. J Non-Cryst Solids. in press.Google Scholar
  57. 57.
    Gainaru C, Fillmer A, Böhmer R. Surface activation by deeply supercooled hydration water in connective tissue proteins. J Phys Chem B 2009; Submitted.Google Scholar
  58. 58.
    Lorthioir C, Alegrıa A, Colmenero J. Out of equilibrium dynamics of poly(vinyl methyl ether) segments in miscible poly(styrene)-poly(vinyl methyl ether) blends. Phys Rev E. 2003;68:031805.CrossRefGoogle Scholar
  59. 59.
    Cangiolosi D, Alegria A, Colmenero J. Dielectric relaxation of polychlorinated biphenyl/toluene mixtures: component dynamics. J Chem Phys. 2008;128:224508.CrossRefGoogle Scholar
  60. 60.
    Urakawa O, Fuse Y, Hori H, Tran-Cong Q, Yano O. A dielectric study on the local dynamics of miscible polymer blends: poly(2-chlorostyrene)/poly(vinyl methyl ether). Polymer. 2001;42:765–73.CrossRefGoogle Scholar
  61. 61.
    Miwa Y, Usami K, Yamamoto K, Sakaguchi M, Sakai M, Shimada S. Direct detection of effective glass transitions in miscible polymer blends by temperature-modulated differential scanning calorimetry. Macromolecules. 2005;38:2355–61.CrossRefGoogle Scholar
  62. 62.
    Kahle S, Korus J, Hempel E, Unger R, Höring S, Schröter G, et al. Glass-transition cooperativity onset in a series of random copolymers poly(n-butyl methacrylate-stat-styrene). Macromolecules. 1997;30:7214–23.CrossRefGoogle Scholar
  63. 63.
    Ngai KL. Correlation between β-relaxation and α-relaxation in the family of poly(n-butyl methacrylate-stat-styrene) random copolymers. Macromolecules. 1999;32:7140–6.CrossRefGoogle Scholar
  64. 64.
    Miller JB, McGrath KJ, Roland CM, Trask CA, Garroway AN. Nuclear magnetic resonance study of polyisoprene/poly(vinylethylene) miscible blends. Macromolecules. 1990;23:4543–7.CrossRefGoogle Scholar
  65. 65.
    Alegria A, Colmenero J, Ngai KL, Roland CM. Observation of the component dynamics in a miscible polymer blend by dielectric, mechanical spectroscopies. Macromolecules. 1994;27:4486.CrossRefGoogle Scholar
  66. 66.
    Ngai KL, Roland CM. Component dynamics in polyisoprene/poly(vinylethylene) blends. Macromolecules. 1995;28:4033–5.CrossRefGoogle Scholar
  67. 67.
    Chung G-C, Kornfield JA, Smith SD. Compositional dependence of segmental dynamics in a miscible polymer blend. Macromolecules. 1994;27:5729–41.CrossRefGoogle Scholar
  68. 68.
    Sakaguchi T, Taniguchi N, Urakawa O, Adachi K. Calorimetric study of dynamical heterogeneity in blends of polyisoprene and poly(vinylethylene). Macromolecules. 2005;38:422–8.CrossRefGoogle Scholar
  69. 69.
    Lodge TP, Wood ER, Haley JC. Two calorimetric glass transitions do not necessarily indicate immiscibility: the case of PEO/PMMA. J Polym Sci B. 2006;44:756–63.CrossRefGoogle Scholar
  70. 70.
    Ngai KL, Roland CM. Models for the component dynamics in blends and mixtures. Rubber Chem Technol. 2004;77:579–90.Google Scholar
  71. 71.
    Roland CM, McGrath KJ, Casalini R. Dynamic heterogeneity in poly(vinyl methyl ether)/poly(2-chlorostyrene) blends. Macromolecules. 2006;39:3581–7.CrossRefGoogle Scholar
  72. 72.
    Lutz TR, He Y, Ediger MD, Cao H, Lin G, Jones AA. Rapid poly(ethylene oxide) segmental dynamics in blends with poly(methyl methacrylate). Macromolecules. 2003;36:1724–30.CrossRefGoogle Scholar
  73. 73.
    Ngai KL, Roland CM. Unusual component dynamics in poly(ethylene oxide)/poly(methyl methacrylate) blends as probed by deuterium NMR. Macromolecules. 2004;37:2817–22.CrossRefGoogle Scholar
  74. 74.
    Ngai KL. Predicting the changes of relaxation dynamics with various modifications of the chemical and physical structures of glass-formers. J Non-Cryst Solids. 2007;353:4237–45.CrossRefGoogle Scholar
  75. 75.
    Jin X, Zhang S, Runt J. Broadband dielectric investigation of amorphous poly(methyl methacrylate)/poly(ethylene oxide) Blends. Macromolecules. 2004;37:8110–5.CrossRefGoogle Scholar
  76. 76.
    Doss A, Hinze G, Schiener B, Hemberger J, Böhmer R. Dielectric relaxation in the fragile viscous liquid state of toluene. J Chem Phys. 1997;107:1740.CrossRefGoogle Scholar
  77. 77.
    Kudlik A, Benkhof S, Blochowicz T, Tschirwitz C, Rossler E. The dielectric response of simple organic glass formers. J Mol Liq. 1999;479:201.Google Scholar
  78. 78.
    Hensel-Bielowka S, Paluch M, Ngai KL. Emergence of the genuine Johari–Goldstein secondary relaxation in m-fluoroaniline after suppression of hydrogen-bond-induced clusters by elevating temperature and pressure. J Chem Phys. 2005;123:014502.CrossRefGoogle Scholar
  79. 79.
    Adachi K, Fujihara I, Ishida Y. Diluent effects on molecular motions and glass transition in polymers. I. Polystyrene-toluene. J Polym Sci Polym Phys Ed. 1975;13:2155–71.CrossRefGoogle Scholar
  80. 80.
    Rössler E, Sillescu H, Spiess HW. Deuteron NMR in relation to the glass transition in polymers. Polymer. 1985;26:203–7.CrossRefGoogle Scholar
  81. 81.
    Floudas G, Steffen W, Fischer EW, Brown W. Solvents and polymer dynamics in concentrated polystyrene/toluene solutions. J Chem Phys. 1993;99:695.CrossRefGoogle Scholar
  82. 82.
    Rizos AK, Johnsen RM, Brown W, Ngai KL. Component dynamics in polystyrene/bis(2-ethylhexyl) phthalate solutions by polarized and depolarized light scattering and dielectric spectroscopy. Macromolecules. 1996;28:5450–7.CrossRefGoogle Scholar
  83. 83.
    Taniguchi N, Urakawa O, Adachi K. Calorimetric study of dynamical heterogeneity in toluene solutions of polystyrene. Macromolecules. 2004;37:7832–8.CrossRefGoogle Scholar
  84. 84.
    Braun G, Kovacs AJ. Variations de la temperature de transition vitreuse du polystyrolene en fonction de la concentration en plastifiant. Compte Rendus. 1965;260:2217–20.Google Scholar
  85. 85.
    Plazek DJ, Riande E, Markovitz H, Raghupathi N. Concentration dependence of the viscoelastic properties of polystyrene-tricresyl phosphate solutions. J Polym Sci Polym Phys Ed. 1979;17:2189.CrossRefGoogle Scholar
  86. 86.
    Savin DA, Larson AM, Lodge TP. Effect of composition on the width of the calorimetric glass transition in polymer-solvent and solvent-solvent mixtures. J Polym Sci B. 2004;42:1155–63.CrossRefGoogle Scholar
  87. 87.
    Svanberg C, Bergman R, Jacobsson P. Secondary relaxation in confined and bulk propylene carbonate. Europhys Lett. 2003;64:358–63.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • K. L. Ngai
    • 1
  • S. Capaccioli
    • 2
    • 3
  • M. Shahin Thayyil
    • 2
    • 3
    • 4
  • N. Shinyashiki
    • 5
  1. 1.Naval Research LaboratoryWashingtonUSA
  2. 2.Dipartimento di FisicaUniversità di PisaPisaItaly
  3. 3.CNR-INFM, PolyLabPisaItaly
  4. 4.Department of PhysicsUniversity of CalicutCalicutIndia
  5. 5.Department of PhysicsTokai UniversityHiratsukaJapan

Personalised recommendations