Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 101, Issue 1, pp 195–198 | Cite as

Synthesis and thermal stability of hydrotalcites based upon gallium

  • Laure-Marie Grand
  • Sara J. Palmer
  • Ray L. Frost
Article

Abstract

Hydrotalcites based upon gallium as a replacement for aluminium in hydrotalcite over a Mg/Al ratio of 2:1 to 4:1 were synthesised. The d(003) spacing varied from 7.83 Å for the 2:1 hydrotalcite to 8.15 Å for the 3:1 gallium containing hydrotalcite. A comparison is made with the Mg/Al hydrotalcite in which the d(003) spacing for the Mg/Al hydrotalcite varied from 7.62 Å for the 2:1 Mg hydrotalcite to 7.98 Å for the 4:1 hydrotalcite. The thermal stability of the gallium containing hydrotalcite was determined using thermogravimetric analysis. Four mass loss steps at 77, 263–280, 485 and 828 °C with mass losses of 10.23, 21.55, 5.20 and 7.58% are attributed to dehydration, dehydroxylation and decarbonation. The thermal stability of the gallium containing hydrotalcite is slightly less than the aluminium hydrotalcite.

Keywords

Hydrotalcite Hydrocalumite Gallium Synthesis Thermal stability 

Notes

Acknowledgements

The financial and infra-structure support of the Queensland Research and Development Centre (QRDC-RioTintoAlcan) and the Queensland University of Technology Inorganic Materials Research Program of the School of Physical and Chemical Sciences are gratefully acknowledged. One of the authors (LMG) thanks the Queensland University of Technology for a visiting student fellowship.

References

  1. 1.
    Allmann R. Crystal structure of pyroaurite. Acta Crystallogr B. 1968;24:972–7.CrossRefGoogle Scholar
  2. 2.
    Ingram L, Taylor HFW. Crystal structures of sjoegrenite and pyroaurite. Mineral Mag. 1967;36:465–79.CrossRefGoogle Scholar
  3. 3.
    Taylor HFW. Crystal structures of some double hydroxide minerals. Mineral Mag. 1973;39:377–89.CrossRefGoogle Scholar
  4. 4.
    Rives V (ed) (2001) Layered double hydroxides: present and future. Nova Science Publishers, Inc., New York.Google Scholar
  5. 5.
    Brown G, Van Oosterwyck-Gastuche MC. Mixed magnesium-aluminum hydroxides. II. Structure and structural chemistry of synthetic hydroxycarbonates and related minerals and compounds. Clay Miner. 1967;7:193–201.CrossRefGoogle Scholar
  6. 6.
    Taylor HFW. Segregation and cation-ordering in sjogrenite and pyroaurite. Mineral Mag. 1969;37:338–42.CrossRefGoogle Scholar
  7. 7.
    Taylor RM. Stabilization of color and structure in the pyroaurite-type compounds iron(II) iron(III) aluminum(III) hydroxycarbonates. Clay Miner. 1982;17:369–72.CrossRefGoogle Scholar
  8. 8.
    Kloprogge JT, Wharton D, Hickey L, Frost RL. Infrared and Raman study of interlayer anions CO3 2−, NO3 , SO4 2− and CIO4 in Mg/Al-hydrotalcite. Am Mineral. 2002;87:623–9.CrossRefGoogle Scholar
  9. 9.
    Palmer SJ, Frost RL. Characterisation of bauxite and seawater neutralised bauxite residue using XRD and vibrational spectroscopic techniques. J Mater Sci. 2009;44:55–63.CrossRefGoogle Scholar
  10. 10.
    Palmer SJ, Frost RL, Nguyen T. Hydrotalcites and their role in coordination of anions in Bayer liquors: anion binding in layered double hydroxides. Coord Chem Rev. 2009;253:250–67.CrossRefGoogle Scholar
  11. 11.
    Palmer SJ, Spratt HJ, Frost RL. Thermal decomposition of hydrotalcites with variable cationic ratios. J Therm Anal Calorim. 2009;95:123–9.CrossRefGoogle Scholar
  12. 12.
    Frost RL, Hales MC, Martens WN. Thermogravimetric analysis of selected group (II) carbonate minerals—implication for the geosequestration of greenhouse gases. J Therm Anal Calorim. 2009;95:999–1005.CrossRefGoogle Scholar
  13. 13.
    Frost RL, Locke AJ, Hales MC, Martens WN. Thermal stability of synthetic aurichalcite. Implications for making mixed metal oxides for use as catalysts. J Therm Anal Calorim. 2008;94:203–8.CrossRefGoogle Scholar
  14. 14.
    Vagvoelgyi V, Daniel LM, Pinto C, Kristof J, Frost RL, Horvath E. Dynamic and controlled rate thermal analysis of attapulgite. J Therm Anal Calorim. 2008;92:589–94.CrossRefGoogle Scholar
  15. 15.
    Vagvolgyi V, Frost RL, Hales M, Locke A, Kristof J, Horvath E. Controlled rate thermal analysis of hydromagnesite. J Therm Anal Calorim. 2008;92:893–7.CrossRefGoogle Scholar
  16. 16.
    Vagvolgyi V, Hales M, Martens W, Kristof J, Horvath E, Frost RL. Dynamic and controlled rate thermal analysis of hydrozincite and smithsonite. J Therm Anal Calorim. 2008;92:911–6.CrossRefGoogle Scholar
  17. 17.
    Nickel EH, Wildman JE. Hydrohonessite—a new hydrated nickel-iron hydroxysulfate mineral; its relationship to honessite, carrboydite, and minerals of the pyroaurite group. Mineral Mag. 1981;44:333–7.CrossRefGoogle Scholar
  18. 18.
    Bish DL, Livingstone A. The crystal chemistry and paragenesis of honessite and hydrohonessite: the sulfate analogs of reevesite. Mineral Mag. 1981;44:339–43.CrossRefGoogle Scholar
  19. 19.
    Nickel EH, Clarke RM. Carrboydite, a hydrated sulfate of nickel and aluminum: a new mineral from Western Australia. Am Mineral. 1976;61:366–72.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • Laure-Marie Grand
    • 1
    • 2
  • Sara J. Palmer
    • 1
  • Ray L. Frost
    • 1
  1. 1.Inorganic Materials Research Program, School of Physical and Chemical SciencesQueensland University of TechnologyBrisbaneAustralia
  2. 2.ENSICAENCaen Cedex 4France

Personalised recommendations