Advertisement

Thermoanalytical studies of silver and lead jarosites and their solid solutions

  • Ray L. Frost
  • Sara J. Palmer
  • János Kristóf
  • Erzsébet Horváth
Article

Abstract

Dynamic and controlled rate thermal analysis has been used to characterise synthesised jarosites of formula [M(Fe)3(SO4)2(OH)6] where M is Pb, Ag or Pb–Ag mixtures. Thermal decomposition occurs in a series of steps. (a) dehydration, (b) well defined dehydroxylation and (c) desulphation. CRTA offers a better resolution and a more detailed interpretation of water formation processes via approaching equilibrium conditions of decomposition through the elimination of the slow transfer of heat to the sample as a controlling parameter on the process of decomposition. Constant-rate decomposition processes of water formation reveal the subtle nature of dehydration and dehydroxylation. CRTA offers a better resolution and a more detailed interpretation of the decomposition processes via approaching equilibrium conditions of decomposition through the elimination of the slow transfer of heat to the sample as a controlling parameter on the process of decomposition. Constant-rate decomposition processes of non-isothermal nature reveal separation of the dehydroxylation steps, since in these cases a higher energy (higher temperature) is needed to drive out gaseous decomposition products through a decreasing space at a constant, pre-set rate.

Keywords

Jarosite Thermal analysis Controlled rate thermal analysis Thermogravimetry 

Notes

Acknowledgements

This research was supported by the Hungarian Scientific Research Fund (OTKA) under grant No. K62175. The financial and infra-structure support of the Queensland University of Technology Inorganic Materials Research Program is gratefully acknowledged.

References

  1. 1.
    Schaller WT. Argentojarosite, a new silver mineral. J Wash Acad Sci. 1923;13:233.Google Scholar
  2. 2.
    Schempp CA. Argento-jarosite: a new silver mineral. Am J Sci. 1923;6:73–5.CrossRefGoogle Scholar
  3. 3.
    Dutrizac JE, Jambor JL, O’Reilly JB. Man’s first use of jarosite: the pre-Roman mining-metallurgical operations at Rio Tinto, Spain. Can Inst Min Metall Bull. 1983;76:78–82.Google Scholar
  4. 4.
    Dutrizac JE, Jambor JL. Jarosites and their application in hydrometallurgy. Rev Miner Geochem. 2000;40:405–52.CrossRefGoogle Scholar
  5. 5.
    Hilebranad WF, Wright FE, New A. Occurrence of plumbojarosite. Am J Sci. 1910;30:191–2.CrossRefGoogle Scholar
  6. 6.
    Leach FI. Plumbojarosite-a little-known mineral. Min J. 1937;20:40.Google Scholar
  7. 7.
    Mumme WG, Scott TR. The relationship between basic ferric sulfate and plumbojarosite. Am Min. 1966;51:443–53.Google Scholar
  8. 8.
    Dutrizac JE, Dinardo O, Kaiman S. Factors affecting lead jarosite formation. Hydrometallurgy. 1980;5:305–24.CrossRefGoogle Scholar
  9. 9.
    Taberdar T, Gulensoy H, Aydin AO. Plumbojarosite mineral found in Bolkardag mines [Turkey] by TGA, DTA, and X-ray diffraction, Marmara Universitesi Fen Bilimleri Dergisi 2, 1985. p. 76–93.Google Scholar
  10. 10.
    Amoros JL, Lunar R, Tavira P. Jarosite: a silver-bearing mineral of the gossan of Rio Tinto (Huelva) and La Union (Cartagena, Spain). Mineralium Deposita. 1981;16:205–13.CrossRefGoogle Scholar
  11. 11.
    Rewitzer C, Hochleitner R. Minerals of the old slags from Lavrion, Greece (Part 2), Rivista Mineralogica Italiana, 1989. p. 83–100.Google Scholar
  12. 12.
    Harris DL, Lottermoser BG, Duchesne J. Ephemeral acid mine drainage at the Montalbion silver mine, north Queensland. Aust J Earth Sci. 2003;50:797–809.CrossRefGoogle Scholar
  13. 13.
    Hudson-Edwards KA, Schell C, Macklin MG. Mineralogy and geochemistry of alluvium contaminated by metal mining in the Rio Tinto area, southwest Spain. App Geochem. 1999;14:1015–30.CrossRefGoogle Scholar
  14. 14.
    Buckby T, Black S, Coleman ML, Hodson ME. Fe sulfate-rich evaporative mineral precipitates from the Rio Tinto, southwest Spain. Min Mag. 2003;67:263–78.CrossRefGoogle Scholar
  15. 15.
    Williams PA. Oxide zone geochemistry. Chichester, West Sussex, England: Ellis Horwood Ltd; 1990.Google Scholar
  16. 16.
    Nagai S, Yamanouchi N. Potassium ore jarosite. I. Properties of jarosite and leaching test of potassium portion, Nippon Kagaku Kaishi (1921-47) 52 (1949) 83–86.Google Scholar
  17. 17.
    Kulp JL, Adler HH. Thermal study of jarosite. Am J Sci. 1950;248:475–87.CrossRefGoogle Scholar
  18. 18.
    Cocco G. Differential thermal analysis of some sulfate minerals. Periodico di Mineralogia. 1952;21:103–38.Google Scholar
  19. 19.
    Tsvetkov AI, Val’yashikhina EP. Thermal characteristics of minerals of the alunite group. Doklady Akademii Nauk SSSR. 1953;89:1079–82.Google Scholar
  20. 20.
    Tsvetkov AI, Val’yashikhina EP. Phase conversions of hydrated iron sulfates (fibroferrite, Fe(SO4)(OH).4.5H2O, and melanterite, FeSO4·7H2O) by heating. Doklady Akademii Nauk SSSR. 1953;93:343–6.Google Scholar
  21. 21.
    Dutrizac JE, Jambor JL. Reviews in mineralogy and geochemistry Volume 40. In: Alpers CN, Jambor JL, Nordstrom DK, editors. Chapter 8 Jarosites and their application in hydrometallurgy; 2000. p. 405–452.Google Scholar
  22. 22.
    Thomas PS, Hirschausen D, White RE, Guerbois JP, Ray AS. Characterization of the oxidation products of pyrite by thermogravimetric and evolved gas analysis. J Therm Anal Calorim. 2003;72:769–76.CrossRefGoogle Scholar
  23. 23.
    Frost RL, Hales MC, Martens WN. Thermogravimetric analysis of selected group (II) carbonate minerals—implication for the geosequestration of greenhouse gases. J Therm Anal Calorim. 2009;95:999–1005.CrossRefGoogle Scholar
  24. 24.
    Palmer SJ, Spratt HJ, Frost RL. Thermal decomposition of hydrotalcites with variable cationic ratios. J Therm Anal Calorim. 2009;95:123–9.CrossRefGoogle Scholar
  25. 25.
    Carmody O, Frost R, Xi Y, Kokot S. Selected adsorbent materials for oil-spill cleanup. A thermoanalytical study. J Therm Anal Calorim. 2008;91:809–16.CrossRefGoogle Scholar
  26. 26.
    Frost RL, Locke A, Martens WN. Thermogravimetric analysis of wheatleyite Na2Cu2+(C2O4)2·2H2O. J Therm Anal Calorim. 2008;93:993–7.CrossRefGoogle Scholar
  27. 27.
    Frost RL, Locke AJ, Hales MC, Martens WN. Thermal stability of synthetic aurichalcite. Implications for making mixed metal oxides for use as catalysts. J Therm Anal Calorim. 2008;94:203–8.CrossRefGoogle Scholar
  28. 28.
    Frost RL, Locke AJ, Martens W. Thermal analysis of beaverite in comparison with plumbojarosite. J Therm Anal Calorim. 2008;92:887–92.CrossRefGoogle Scholar
  29. 29.
    Frost RL, Wain D. A thermogravimetric and infrared emission spectroscopic study of alunite. J Therm Anal Calorim. 2008;91:267–74.CrossRefGoogle Scholar
  30. 30.
    Hales MC, Frost RL. Thermal analysis of smithsonite and hydrozincite. J Therm Anal Calorim. 2008;91:855–60.CrossRefGoogle Scholar
  31. 31.
    Palmer SJ, Frost RL, Nguyen T. Thermal decomposition of hydrotalcite with molybdate and vanadate anions in the interlayer. J Therm Anal Calorim. 2008;92:879–86.CrossRefGoogle Scholar
  32. 32.
    Vagvoelgyi V, Daniel LM, Pinto C, Kristof J, Frost RL, Horvath E. Dynamic and controlled rate thermal analysis of attapulgite. J Therm Anal Calorim. 2008;92:589–94.CrossRefGoogle Scholar
  33. 33.
    Vagvolgyi V, Frost RL, Hales M, Locke A, Kristof J, Horvath E. Controlled rate thermal analysis of hydromagnesite. J Therm Anal Calorim. 2008;92:893–7.CrossRefGoogle Scholar
  34. 34.
    Vagvolgyi V, Hales M, Martens W, Kristof J, Horvath E, Frost RL. Dynamic and controlled rate thermal analysis of hydrozincite and smithsonite. J Therm Anal Calorim. 2008;92:911–6.CrossRefGoogle Scholar
  35. 35.
    Zhao Y, Frost RL, Vagvolgyi V, Waclawik ER, Kristof J, Horvath E. XRD, TEM and thermal analysis of yttrium doped boehmite nanofibres and nanosheets. J Therm Anal Calorim. 2008;94:219–26.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • Ray L. Frost
    • 1
  • Sara J. Palmer
    • 1
  • János Kristóf
    • 2
  • Erzsébet Horváth
    • 3
  1. 1.Inorganic Materials Research Program, School of Physical and Chemical SciencesQueensland University of TechnologyBrisbaneAustralia
  2. 2.Department of Analytical ChemistryUniversity of PannoniaVeszprémHungary
  3. 3.Department of Environmental Engineering and Chemical TechnologyUniversity of PannoniaVeszprémHungary

Personalised recommendations