Journal of Thermal Analysis and Calorimetry

, Volume 99, Issue 3, pp 741–747 | Cite as

Effect of amyloid beta peptides Aβ1–28 and Aβ25–40 on model lipid membranes

  • Maksim Ionov
  • Barbara Klajnert
  • Konstantinos Gardikis
  • Sophia Hatziantoniou
  • Bartlomiej Palecz
  • Bakhtiyar Salakhutdinov
  • Josep Cladera
  • Maria Zamaraeva
  • Costas Demetzos
  • Maria Bryszewska


To investigate the molecular interaction of amyloid beta peptides Aβ1–28 or Aβ25–40 with model lipid membranes differential scanning calorimetry (DSC) and DPH and TMA DPH fluorescence anisotropy approaches were used. The main transition temperature (T m) and enthalpy change (ΔH) of model lipid membranes composed of DMPC/DPPG on addition of Aβ25–40 or Aβ25–40 at 10:1 (w/w) phospholipid/peptide ratio either non-aggregated or previously aggregated were examined. The effect of Aβ1–28 and Aβ25–40 on the membrane fluidity of liposomes made of DMPC/DPPG (98:2 w/w) was determined by fluorescence anisotropy of incorporated DPH and TMA DPH. The results of this study provide information that Aβ1–28 preferentially interacts with the hydrophilic part of the model membranes, while Aβ25–40 rather locates itself in the hydrophobic core of the bilayer where it reduces the order of the phospholipids packing.


Amyloid beta peptides DMPC membrane DPH fluorescence anisotropy DSC 


β-amyloid peptide


Alzheimer’s disease


10 mM Hepes buffer pH-7.4


Heat capacity








Differential scanning calorimetry


Main phase-transition enthalpy


Lipid:peptide ratio


Large unilamellar vesicles


Gel to liquid-crystalline phase transition temperature


1-[4-(trimethyl-ammonium) phenyl]- 6-phenyl-1,3,5-hexatriene



This work was supported by POL-POSTDOC III (PBZ/MniSW/07/2006/22) Nr D077/P01/2007, Ministry of Science and High education, Poland.

Supplementary material

10973_2009_405_MOESM1_ESM.doc (34 kb)
Supplementary material 1 (DOC 34 kb)


  1. 1.
    Prusiner SB. Prions. Proc Natl Acad Sci USA. 1998;95:13363–83.CrossRefGoogle Scholar
  2. 2.
    Dobson CM. Protein folding and misfolding. Nature. 2003;426:884–90.CrossRefGoogle Scholar
  3. 3.
    Revesz T, Ghiso J, Lashley T, Plant G, Rostagno A, Frangione B, et al. Cerebral amyloid angiopathies: a pathologic, biochemical, and genetic view. J Neuropathol Exp Neurol. 2003;62:885–98.Google Scholar
  4. 4.
    Temussi PA, Masino L, Pastore A. From Alzheimer to Huntington: why is a structural understanding so difficult?. EMBO J. 2003;22:355–61.CrossRefGoogle Scholar
  5. 5.
    Serpell LC. Alzheimer’s amyloid fibrils: structure and assembly. Biochim Biophys Acta. 2000;1502:16–30.Google Scholar
  6. 6.
    Rottkamp CA, Atwood CS, Joseph JA, Nunomura A, Perry G, Smith MA. The state versus amyloid-beta: the trial of the most wanted criminal in Alzheimer disease. Peptides. 2002;23:1333–41.CrossRefGoogle Scholar
  7. 7.
    DeMarco ML, Daggett V. From conversion to aggregation: protofibril formation of the prion protein. Proc Natl Acad Sci USA. 2004;101:2293–98.CrossRefGoogle Scholar
  8. 8.
    Klajnert B, Cladera J, Bryszewska M. Molecular interactions of dendrimers with amyloid peptides: pH dependence. Biomacromolecules 2006;7:2186–91.CrossRefGoogle Scholar
  9. 9.
    Sabate R, Gallardo M, Estelrich J. Spontaneous incorporation in β-amyloid peptide into neutral liposomes. Colloids Surf. 2005;270(271):13–7.Google Scholar
  10. 10.
    Behbehani GR, Mirzaie M. A high performance method for thermodynamic study on the binding of copper ion and glycine with Alzheimer’s amyloid β peptide. J Therm Anal Calorim. 2009;96:631–5.CrossRefGoogle Scholar
  11. 11.
    Pillot T, Goethals M, Vanloo B, Talussot C, Brasseur R, Vandekerckhove J, et al. Fusogenic properties of the C-terminal domain of the Alzheimer b-amyloid peptide. J Biol Chem. 1996;271:28757–65.CrossRefGoogle Scholar
  12. 12.
    Choo-Smith LP, Garzon-Rodriguez W, Glabe CG, Surewicz WK. Acceleration of amyloid fibril formation by specific binding of Ab-(1–40) peptide to ganglioside-containing membrane vesicles. J Biol Chem. 1997;272:22987–90.CrossRefGoogle Scholar
  13. 13.
    Barnham KJ, Masters CL, Bush AI. Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov. 2004;3:205–14.CrossRefGoogle Scholar
  14. 14.
    Kaufer JN, Sorrentino J, Sitar D. Amyloid beta peptide membrane perturbation is the basis for its biological effects. Neurochem Res. 1999;24:1621–30.CrossRefGoogle Scholar
  15. 15.
    Ambroggio EE, Kim DH, Separovic F, Barrow CJ, Barnham KJ, Bagatolli LA, et al. Surface behavior and lipid interaction of Alzheimer β-amyloid peptide 1–42: a membrane-disrupting peptide. Biophys J. 2005;88:2706–13.CrossRefGoogle Scholar
  16. 16.
    Abramov AY, Canevari L, Duchen MR. Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J Neurosci. 2004;24(2):565–75.CrossRefGoogle Scholar
  17. 17.
    Murray IVJ, Sindoni ME, Axelsen PH. Promotion of oxidative lipid membrane damage by amyloid β proteins. Biochemistry. 2005;44(37):12606–13.CrossRefGoogle Scholar
  18. 18.
    Kevin J, Roberto C, Konrad B, Colin L, Hill M. Delineating common molecular mechanisms in Alzheimer's and prion diseases. Trends Biochem Sci. 2006;31(8):465–72.CrossRefGoogle Scholar
  19. 19.
    Mason RP, Trumbore MW, Pettegrew JW. Membrane interactions of a phosphomonoester elevated early in Alzheimer’s disease. Neurobiol Aging. 1995;16(4):531–9.CrossRefGoogle Scholar
  20. 20.
    Abramov AY, Canevari L, Duchen MR. Calcium signals induced by amyloid β peptide and their consequences in neurons and astrocytes in culture. Biochim Biophys Acta. 2004;1742:81–7.CrossRefGoogle Scholar
  21. 21.
    Terzi E, Holzemann G, Seeling J. Self-association of β-amyloid peptide (1–40) in solution and binding to lipid membranes. J Mol Biol. 1995;252:633–42.CrossRefGoogle Scholar
  22. 22.
    Kremer JJ, Sklansky DJ, Murphy RM. Profile of changes in lipid bilayer structure caused by β-amyloid peptide. Biochemistry 2001;40(29):8563–71.CrossRefGoogle Scholar
  23. 23.
    Alarco′n JM, Brito JA, Hermosilla T, Atwater I, Mears D, Rojas E. Ion channel formation by Alzheimer’s disease amyloid b-peptide (Ab40) in unilamellar liposomes is determined by anionic phospholipids. Peptides. 2006;27:95–104.CrossRefGoogle Scholar
  24. 24.
    Grasso D, Milardi D, La Rosa C, Rizzarelli E. DSC study of the interaction of the prion peptide PrP 106-126 with artifical membranes. New J Chem. 2001;25:1543–48.CrossRefGoogle Scholar
  25. 25.
    Gardikis K, Hatziantoniou S, Viras K, Demetzos C. Effect of a bioactive curcumin derivative on DPPC membrane: a DSC and Raman spectroscopy study. Thermochim Acta. 2006;447:1–4.CrossRefGoogle Scholar
  26. 26.
    Antunes-Madeira MC, Videira RA, Madeira VMC. Effects of parathion on membrane organization and its implications for the mechanisms of toxicity. Biochim Biophys Acta. 1994;1190:149–54.CrossRefGoogle Scholar
  27. 27.
    Gardikis K, Hatziantoniou S, Viras K, Wagner M, Demetzos C. A DSC and Raman spectroscopy study on the effect of PAMAM dendrimer on DPPC model lipid membranes. Int J Pharm. 2006;318:118–23.CrossRefGoogle Scholar
  28. 28.
    Pentak D, Sulkowskil WW, Sulkowska A. Calorimetric and EPR studies of the thermotropic phase behavior of phospholipid membranes. J Therm Anal Calorim. 2008;93:471–7.CrossRefGoogle Scholar
  29. 29.
    Benseny-Cases N, Cocera M, Cladera J. Conversion of non-fibrillar beta-sheet oligomers into amyloid fibrils in Alzheimer's disease amyloid peptide aggregation. Biochem Biophys Res Commun. 2007;361:916–21.CrossRefGoogle Scholar
  30. 30.
    Wang S, Beghem JP, Gradton E, Glasser M. Orientational distribution of 1,6-diphenyl-1,3,5-hexatriene in phospholipid vesicles as determined by global analysis of frequency domain fluorimetry data. Biochemistry. 1991;30:5565–72.CrossRefGoogle Scholar
  31. 31.
    Zannoni C, Arcioni A, Cavatora P. Fluorescence depolarisation in liquid crystals and membrane bilayers. Chem Phys Lipids. 1983;32:179–250.CrossRefGoogle Scholar
  32. 32.
    Moya-Quiles MR, Munoz DE, Vidal CJ. The pyrethroid insecticide deltamethrin modifies the thermotropic properties and lipid packing order of model membranes. Chem Phys Lipids. 1996;83:61–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • Maksim Ionov
    • 1
  • Barbara Klajnert
    • 1
  • Konstantinos Gardikis
    • 2
  • Sophia Hatziantoniou
    • 2
  • Bartlomiej Palecz
    • 3
  • Bakhtiyar Salakhutdinov
    • 4
  • Josep Cladera
    • 5
  • Maria Zamaraeva
    • 6
  • Costas Demetzos
    • 2
  • Maria Bryszewska
    • 1
  1. 1.Department of General BiophysicsUniversity of LodzLodzPoland
  2. 2.Department of Pharmaceutical TechnologySchool of Pharmacy University of AthensAthensGreece
  3. 3.Department of Physical ChemistryUniversity of LodzLodzPoland
  4. 4.Institute of Bioorganic Chemistry, ASRUTashkentUzbekistan
  5. 5.Unitat de Biofisica, Departament de Bioquimica i de Biologia MolecularUniversitat Autónoma de BarcelonaBellaterraSpain
  6. 6.Department of BiophysicsUniversity of BialystokBialystokPoland

Personalised recommendations