Journal of Thermal Analysis and Calorimetry

, Volume 102, Issue 1, pp 225–232 | Cite as

Spectroscopic, thermal and kinetic studies of coordination compounds of Zn(II), Cd(II) and Hg(II) with norfloxacin

  • Moamen S. Refat
  • Gehad G. Mohamed
  • Robson F. de Farias
  • Annie K. Powell
  • Mohamed S. El-Garib
  • Sabry A. El-Korashy
  • Mostafa A. Hussien


Some metal complexes of norfloxacin (NOR) with the formula [M(NOR)2]X2·nH2O [M = Zn(II), (X = Cl, AcO, Br and I), Cd(II), (X = Cl, NO3 and SO42−) and Hg(II) (X = Cl, NO3 and AcO)] have been synthesised and studied using elemental analysis (CHN), electronic (UV–vis, mid infrared, mass, and 1H-NMR spectra), TG and DTA. The thermal decomposition processes of these complexes were discussed. The Correlation coefficient, the activation energies, E*, the pre-exponential factor, A, the entropies, S*, enthalpies, H* and Gibbs free energies, G*, of the thermal decomposition reactions have been derived from thermogravimetric (TG) and differential thermogravimetric (DTG) curves. The characterization of the final products of the decomposition was achieved by IR spectra and X-ray powder diffraction (XRD). Using the Coats–Redfern and Horowitz–Metzeger methods, kinetic analysis of the thermogravimetric data is performed.


Norfloxacin Thermal analysis Infrared spectra Kinetic data Complexes 


  1. 1.
    Zaki A, Schreiber EC, Weliky I, Knill JR, Hubsher JA. Clinical pharmacology of oral cephradine. J Clin Pharmacol. 1974;14:118–26.Google Scholar
  2. 2.
    Klastersky J, Daneau D, Weerts D. Cephradine. Chemotherapy. 1973;18:191–204.CrossRefGoogle Scholar
  3. 3.
    Anacona JR. Synthesis and antibacterial activity of some metal complexes of beta-lactamic antibiotics. J Coord Chem. 2001;54:355–65.CrossRefGoogle Scholar
  4. 4.
    Lozano MJ, Borrás J. Antibiotic as ligand. Coordinating behavior of the cephalexin towards Zn(II) and Cd(II) ions. J Inorg Biochem. 1987;31:187–95.CrossRefGoogle Scholar
  5. 5.
    Zhao A, Carraher CE, Barone G, Pellerito C, Scopelliti M, Pellerito L. Mössbauer investigation on organotin polyester amines containing ciprofloxacin. Polym Mater: Sci Eng. 2005;93:414–6.Google Scholar
  6. 6.
    Iqbal MS, Ahmad AR, Sabir M, Asad SM. Preparation, characterization and biological evaluation of copper(II) and zinc(II) complexes with cephalexin. J Pharm Pharmacol. 1999;51:371–5.CrossRefGoogle Scholar
  7. 7.
    Sorenson JRJ. Copper chelates as possible active forms of the antiarthritic agents. J Med Chem. 1976;19:135–48.CrossRefGoogle Scholar
  8. 8.
    Brown DH, Smith WE, Teape JW, Lewis AJ. Antiinflammatory effects of some copper complexes. J Med Chem. 1980;23:729–34.CrossRefGoogle Scholar
  9. 9.
    Williams DR. The metals of life. London: Van Nostrand Reinhold; 1971.Google Scholar
  10. 10.
    Ruiz M, Perelló L, Ortiz R, Castiñeiras A, Maichle-Mössmer C, Cantón E. Synthesis, characterization, and crystal structure of [Cu(cinoxacinate)2]·2H2O complex: a square-planar CuO4 chromophore. Antibacterial studies. J Inorg Biochem. 1995;59:801–10.CrossRefGoogle Scholar
  11. 11.
    Castillo-Blum SE, Barba-Behrens N. Coordination chemistry of some biologically active ligands. Coord Chem Rev. 2000;196:3–30.CrossRefGoogle Scholar
  12. 12.
    Turel I, Leban I, Bukovec N. Crystal structure and characterization of the bismuth(III) compound with quinolone family member (ciprofloxacin). Antibacterial study. J Inorg Biochem. 1997;66:241–5.CrossRefGoogle Scholar
  13. 13.
    Turel I, Golič L, Bukovec P, Gubina M. Antibacterial tests of bismuth(III)–quinolone (ciprofloxacin, cf) compounds against Helicobacter pylori and some other bacteria. Crystal structure of (cfH2)2[Bi2Cl10]·4H2O. J Inorg Biochem. 1998;71:53–60.CrossRefGoogle Scholar
  14. 14.
    Yang P, Li JB, Tian YN, Yu KB. Synthesis and crystal structure of rare earth complex with Ciprofloxacin. Chin Chem Lett. 1999;10:879–80.Google Scholar
  15. 15.
    Wu G, Wang G, Fu X, Zhu L. Synthesis, crystal structure, stacking effect and antibacterial studies of a novel quaternary copper(II) complex with quinolone. Molecules. 2003;8(2):287–96.CrossRefGoogle Scholar
  16. 16.
    Turel I, Leban I, Klintschar G, Bukovec N, Zalar S. Synthesis, crystal structure, and characterization of two metal-quinolone compounds. J Inorg Biochem. 1997;66:77–82.CrossRefGoogle Scholar
  17. 17.
    Turel I, Gruber K, Leban I, Bukovec N. Synthesis, crystal structure, and characterization of three novel compounds of the quinolone family member (norfloxacin). J Inorg Biochem. 1996;61:197–212.CrossRefGoogle Scholar
  18. 18.
    Turel I, Leban I, Zupancic M, Bukovec N, Gruber K. An adduct of magnesium sulfate with a member of the quinolone family (ciprofloxacin). Acta Crystallogr C. 1996;52:2443–5.CrossRefGoogle Scholar
  19. 19.
    Chen Z-F, Xiong R-G, Zuo J-L, Guo Z, You X-Z, Fun H-K. X-Ray crystal structures of Mg2+ and Ca2+ dimers of the antibacterial drug norfloxacin. J Chem Soc Dalton Trans. 2000;4013–4014.Google Scholar
  20. 20.
    Al-Mustafa J. Magnesium, calcium and barium perchlorate complexes of ciprofloxacin and norfloxacin. Acta Chim Slov. 2002;49:457–66.Google Scholar
  21. 21.
    Ruíz M, Perelló L, Server-Carrió J, Ortiz R, García-Granda S, Díaz MR, et al. Cinoxacin complexes with divalent metal ions. Spectroscopic characterization. Crystal structure of a new dinuclear Cd(II) complex having two chelate-bridging carboxylate groups. Antibacterial studies. J Inorg Biochem. 1998;69:231–9.CrossRefGoogle Scholar
  22. 22.
    Gupta R, Saxena RK, Chaturvedi P, Virdi JS. Chitinase production by Streptomyces viridificans: its potential in fungal cell wall lysis. J Appl Bacteriol. 1995;78:378–83.Google Scholar
  23. 23.
    Geary WJ. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord Chem Rev. 1971;7:81–122.CrossRefGoogle Scholar
  24. 24.
    Coats W, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.CrossRefGoogle Scholar
  25. 25.
    Omar MM. Spectral, thermal and biological activity studies on ruthenium(II) complexes with some pyridylamines. J Therm Anal Calorim. 2009;96:607–15.CrossRefGoogle Scholar
  26. 26.
    Rotaru A, Goşa M, Rotaru P. Computational thermal and kinetic analysis. Software for non-isothermal kinetics by standard procedure. J Therm Anal Calorim. 2008;94:367–71.CrossRefGoogle Scholar
  27. 27.
    Verma RK, Verma L, Bhushan A, Verma BP. Thermal decomposition of complexes of cadmium(II) and mercury(II) with triphenylphosphanes. J Therm Anal Calorim. 2007;90:725–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • Moamen S. Refat
    • 1
    • 2
  • Gehad G. Mohamed
    • 3
  • Robson F. de Farias
    • 4
  • Annie K. Powell
    • 5
  • Mohamed S. El-Garib
    • 1
  • Sabry A. El-Korashy
    • 6
  • Mostafa A. Hussien
    • 1
    • 5
  1. 1.Chemistry Department, Faculty of Science, Port-SaidSuez Canal UniversityPort-SaidEgypt
  2. 2.Chemistry Department, Faculty of ScienceTaif UniversityTaifKingdom of Saudi Arabia
  3. 3.Chemistry Department, Faculty of ScienceCairo UniversityGizaEgypt
  4. 4.Núcleo de Pesquisa e Desenvolvimento da Educação Matemática e CientíficaUniversidade Federal do Pará (UFPA)BelémBrazil
  5. 5.Institute of Inorganic ChemistryUniversity of KarlsruheKarlsruheGermany
  6. 6.Chemistry Department, Faculty of Science, IsmailiaSuez Canal UniversityIsmailiaEgypt

Personalised recommendations