DSC studies on the curing kinetics of chitosan–alanine using glutaraldehyde as crosslinker



The curing of chitosan–alanine with glutaraldehyde as curing agent in the presence of Chlorpheniramine Maleate (CPM) is carried out with the help of differential scanning calorimeter (DSC). The effect of concentration of chitosan and percentage of crosslinker on the curing is studied at a rate of 5 °C/min. Cure kinetics are measured from 30 to 200 °C at four different heating rates (3, 5, 7 and 10 °C/min). It is observed that the crosslinking of chitosan–alanine is an exothermic process which results in a positive peak in the curves. An increase in activation energy (Eα) is observed with extent of conversion.


Chitosan Crosslinker IPNs Curing Thermal analysis 


  1. 1.
    Illum L. Chitosan and its use as a pharmaceutical excipient. Pharm Res. 1998;15:1326–31.CrossRefGoogle Scholar
  2. 2.
    Nunthanid J, Puttipipatkhachorn S, Yamamoto K, Peck GE. Physical properties and molecular behaviors of chitosan films. Drug Dev Ind Pharm. 2001;27(2):143–57.CrossRefGoogle Scholar
  3. 3.
    Savant V, Torres JA. American Chitoscience Society, vol 1. 1995; p. 1–4.Google Scholar
  4. 4.
    Barreiro-Iglesias R, Alvarez-Lorenzo C, Concheiro A. Chitosan/sodium dodecylsulfate interactions: calorimetric titration and consequences on the behaviour of solutions and hydrogel beads. J Therm Anal Calorim. 2005;82:499–505.CrossRefGoogle Scholar
  5. 5.
    Borchard G, Junginger HE. Modern drug delivery applications of chitosan. Adv Drug Deliv Rev. 2001;52(2):103–50.CrossRefGoogle Scholar
  6. 6.
    Karlsen J, Skaugrud O. Excipient properties of chitosan. Manuf Chem. 1991;62:18–9.Google Scholar
  7. 7.
    Singla AK, Chawla M. Chitosan: some pharmaceutical and biological aspects – an update. J Pharm Pharmacol. 2001;53(8):1047–67.CrossRefGoogle Scholar
  8. 8.
    Borchard G. Chitosan for gene delivery. Adv Drug Deliv Rev. 2001;52(2):145–50.CrossRefGoogle Scholar
  9. 9.
    Thanou M, Verhoef JC, Junginger HE. Oral drug absorption enhancement by chitosan and its derivative. Adv Drug Deliv Rev. 2001;52(2):117–26.CrossRefGoogle Scholar
  10. 10.
    Mack EJ, Okano T, Kim SW. In: Peppas NA, editor. Hydrogels in medicine and pharmacy, vol 2. CRC: Boca Raton, FL; 1987. p. 65.Google Scholar
  11. 11.
    Park K, Shalaby WSW, Park H. Biodegradable hydrogels for drug delivery. Academic: Lancaster, PA; 1993. p. 63.Google Scholar
  12. 12.
    Jayakrishnan A, Jameela SR. Glutaraldehyde as a fixative in bioprostheses and drug delivery matrices. Biomaterials. 1996;17:471–84.CrossRefGoogle Scholar
  13. 13.
    Draget KI, Varum KM, Moen E, Gynnild H, Smidsrod O. Chitosan crosslinked with Mo(VI) polyoxyanions: a new gelling system. Biomaterials. 1992;13:635–8.CrossRefGoogle Scholar
  14. 14.
    Lin-Gibson S, Walls HJ, Kennedy SB, Welsh ER. Reaction kinetics and gel properties of blocked diisocyinate crosslinked chitosan hydrogels. Carbohydr Polym. 2003;54:193–9.CrossRefGoogle Scholar
  15. 15.
    Estrela dos Santos J, Dockal ER, Cavalheiro ÉTG. Thermal behavior of Schiff bases from chitosan. J Therm Anal Calorim. 2005;79:243–8.CrossRefGoogle Scholar
  16. 16.
    Gupta KC, Ravi-Kumar MNV. Semi-Interpenetrating polymer network beads of chitosan-glycine for controlled release of chlorpheniramine maleate. J Appl Polym Sci. 2000;76:672–83.CrossRefGoogle Scholar
  17. 17.
    Kumari K, Kundu PP. Semi-Interpenetrating polymer networks (IPNs) of chitosan and l-alanine for monitoring the release of chlorpheniramine maleate. J Appl Polym Sci. 2007;103(6):3751–7.CrossRefGoogle Scholar
  18. 18.
    Bolbukh YN, Tertykh VA, Gawdzik B. TG and DSC studies of filled porous copolymers. J Therm Anal Calorim. 2006;86:125–32.CrossRefGoogle Scholar
  19. 19.
    Papageorgiou GZ, Achilias DS, Bikiaris DN, Karayannidis GP. Isothermal and non-isothermal crystallization kinetics of branched and partially crosslinked PET. J Therm Anal Calorim. 2006;84:85–9.CrossRefGoogle Scholar
  20. 20.
    Vyazovkin S, Wight CA. Kinetics in solids. Annu Rev Phys Chem. 1997;48:125–49.CrossRefGoogle Scholar
  21. 21.
    Vyazovkin S. On the phenomenon of variable activation energy for the condensed phase reactions. New J Chem. 2000;24:913–7.CrossRefGoogle Scholar
  22. 22.
    Vyazovkin S. Kinetic concepts of thermally stimulated reactions in solids: a view from a historical perspective. Int Rev Phys Chem. 2000;19:45–60.CrossRefGoogle Scholar
  23. 23.
    Vyazovkin S. Computational aspects of kinetic analysis. Part C. The ICTAC kinetics project—the light at the end of the tunnel. Thermochim Acta. 2000;355:155–63.CrossRefGoogle Scholar
  24. 24.
    Vyazovkin S, Sbirrazzuoli N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun. 2006;27:1515–32.CrossRefGoogle Scholar
  25. 25.
    Doyle CD. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6:639–42.CrossRefGoogle Scholar
  26. 26.
    Flynn JH, Wall LA. General treatment of the thermogravimetry of the polymers. J Res Natl Bur Stand. 1966;70A:487–523.Google Scholar
  27. 27.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  1. 1.Department of Chemical TechnologySant Longowal Institute of Engineering and TechnologyLongowalIndia
  2. 2.Liquid Crystal Group, Material Research Laboratory, School of Physics and Material ScienceThapar UniversityPatialaIndia

Personalised recommendations