Journal of Thermal Analysis and Calorimetry

, Volume 99, Issue 2, pp 621–629 | Cite as

Thermomechanical characterization of PVDF and P(VDF-TrFE) blends containing corn starch and natural rubber

  • R. D. Simoes
  • M. A. Rodriguez-Perez
  • J. A. de Saja
  • C. J. L. Constantino
Article

Abstract

Films of poly(vinylidene fluoride), PVDF, and poly(vinylidene fluoride – trifluoroethylene), P(VDF-TrFE), containing corn starch and latex of natural rubber as additives were produced by compressing/annealing forming blends visioning applications as biomaterials. Therefore, considering the possible applications of these blends, a basic characterization has been carried out targeting to infer on their thermomechanical properties. The polymer films (PVDF and P(VDF-TrFE)) with different percentage of additives were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TG), differential scanning calorimetry (DSC), and dynamical-mechanical analysis (DMA). The compressing/annealing process allowed discarding the necessity of using the solvents to dissolve either PVDF or P(VDF-TrFE), which are usually toxic to human. The results showed that the polymers do not interact chemically with the additives with the blends showing high thermal stability and elasticity modulus at the same order of magnitude of the bone, for instance. The SEM imaged revealed that the blends present morphological structures of typical physical mixtures where each material can be identified within the blends.

Keywords

PVDF P(VDF-TrFE) Films Blends Thermomechanical properties 

Notes

Acknowledgements

FAPESP and CAPES (process 118/06) from Brazil and Fundación Carolina and MICINN (PHB2005-0057-PC) from Spain for the financial support.

References

  1. 1.
    Wang Y, Wang J, Wang F, Li S, Xiao J. PVDF based all-organic composite with high dielectric constant. Polym Bull. 2008;60:647–55.CrossRefGoogle Scholar
  2. 2.
    Ciesinska W, Zielinski J, Brzozowska T. Thermal treatment of pitch-polymer blends. J Therm Anal Calorim. 2009;95:193–6.CrossRefGoogle Scholar
  3. 3.
    Molenda M, Dziembaj R, Piwowarska Z, Drozdek M. A new method of coating powdered supports with conductive carbon films. J Therm Anal Calorim. 2007;88:503–6.CrossRefGoogle Scholar
  4. 4.
    Chinaglia DL, Schmidt TF, Santos LF, Balogh DT, Oliveira ON Jr, Faria RM. Fabrication of novel light-emitting devices based on green-phosphor/conductive-polymer composites. Philos Mag Lett. 2007;87:403–8.CrossRefGoogle Scholar
  5. 5.
    Ito A, Tanaka K, Kawaji H, Atake T, Ando N, Hato Y. Magnetic phase transition of Li0.75CoO2 compared with LiCoO2 and Li0.5CoO2. J Therm Anal Calorim. 2008;92:399–401.CrossRefGoogle Scholar
  6. 6.
    Nalwa HS. Ferroelectric polymers: chemistry, physics and applications. New York: Marcel Dekker; 1995.Google Scholar
  7. 7.
    Gregorio R Jr, Cestari M. Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene Fluoride). J Polym Sci. 1994;32:859–70.Google Scholar
  8. 8.
    Tabary N, Lepretre S, Boschin F, Blanchemain N, Neut C, Delcourt-Debruyne E, et al. Functionalization of PVDF membranes with carbohydrate derivates for the controlled delivery of chlorhexidin. Biomol Eng. 2007;24:472–6.CrossRefGoogle Scholar
  9. 9.
    Gallego-Perez D, Ferrell N, Hansford DJ. Fabrication of piezoelectric Polyvinylidene Fluoride (PVDF) microstructures by soft lithography for tissue engineering and cell biology applications. In: MRS Spring Meeting San Francisco, California. 2007. http://www.mrs.org/s_mrs/sec_subscribe.asp?CID=8775&DID=201955&action=detail Accessed 12 June 2009.
  10. 10.
    Callegari B, Belangero WD. Análise da interface formada entre o polifluoreto de vinilideno (piezelétrico e não piezelétrico) e o tecido ósseo de ratos. Acta Ortopedica Brasileira. 2004;12:160–6.Google Scholar
  11. 11.
    Laroche G, Marois Y, Guidoin R, King MW, Martin L, How T, et al. Polyvinylidene fluoride (PVDF) as a biomaterial: from polymeric raw material to monofilament vascular suture. J Biomed Mater Res. 1995;29:1525–36.CrossRefGoogle Scholar
  12. 12.
    Valentini RF, Vargo TG, Gardella JA, Aebischer P. Electrically charged polymeric substrates enhance nerve fibre outgrowth In vitro. Biomaterials. 1992;13:183–90.CrossRefGoogle Scholar
  13. 13.
    Aoshima R, Kanda Y, Takada A, Yamashita A. Sulfonated poly(vinylidene fluoride) as a biomaterial—immobilization of urokinase and biocompatibility. J Biomed Mater Res. 1982;16:289–99.CrossRefGoogle Scholar
  14. 14.
    Fernandez MV, Suzuki A, Chiba A. Study of annealing effects on the structure of vinylidene fluoride-trifluoroethylene copolymers using WAXS and SAXS. Macromoleculares. 1987;20:1806–11.CrossRefGoogle Scholar
  15. 15.
    Matsumoto A, Horie S, Yamada H, Matsushige K, Kuwajima S, Ishida K. Ferro- and piezoelectric properties of vinylidene fluoride oligomer thin film fabricated on flexible polymer film. Appl Phys Lett. 2007;90:290–6.Google Scholar
  16. 16.
    Ploss B, Ploss B. Dielectric nonlinearity of PVDF–TrFE copolymer. Polymer. 2000;41:6087–93.CrossRefGoogle Scholar
  17. 17.
    Gimenes R, Zaghete MA, Bertolini MJ, Varela JA, Coelho LO, Silva NF. Composites PVDF-TrFE/BT used as bioactive membranes for enhancing bone regeneration (Proceedings Paper). Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD) 2004;5385:539–47.Google Scholar
  18. 18.
    Beloti MM, de Oliveira PT, Gimenes R, Zaghete MA, Bertolini MJ, Rosa AL. In vitro biocompatibility of a novel membrane of the composite poly(vinylidene-trifluoroethylene)/barium titanate. J Biomed Mater Res Part A. 2006;79A:282–8.CrossRefGoogle Scholar
  19. 19.
    Agostini DLS, Constantino CJL, Job AE. Thermal degradation of both latex and latex cast film forming membranes combined TG/FTIR investigation. J Therm Anal Calorim. 2008;91:703–7.CrossRefGoogle Scholar
  20. 20.
    de Oliveira LCS, de Arruda EJ, Favaro SP, da Costa RB, Gonçalves PS, Job AE. Evaluation of thermal behavior of latex membranes from genetically improved rubber tree (Hevea brasiliensis). Thermochim Acta. 2006;445:27–31.CrossRefGoogle Scholar
  21. 21.
    Brandão ML, Coutinho Netto J, Thomazini JA, Lachat JJ, Muglia VF, Piccinato CE. Prótese vascular derivada do látex. Braz Vasc J. 2007;6:130–41.Google Scholar
  22. 22.
    Neves-Junior WFP, Ferreira M, Alves MCO, Graeff CFO, Mulato M, Coutinho-Netto J, et al. Influence of fabrication process on the final properties of natural-rubber latex tubes for vascular prosthesis. Braz J Phys. 2006;36:586–91.CrossRefGoogle Scholar
  23. 23.
    Balabanian CACA, Coutinho-Netto J, Lamano-Carvalho TL, Lacerda SA, Brentegani LG. Biocompatibility of natural latex implanted into dental alveolus of ratos. J Oral Sci. 2006;48:201–5.CrossRefGoogle Scholar
  24. 24.
    Lacerda LG, da Carvalho Silva, Filho MA, Demiate IM, Bannach G, Ionashiro M, et al. Thermal behaviour of corn starch granules under action of fungal α-amylase. J Therm Anal Calorim. 2008;93:445–9.CrossRefGoogle Scholar
  25. 25.
    Gomes ME, Sikavitsas VI, Behravesh E, Reis RL, Mikos AG. Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds. J Biomed Mater Res Part A. 2003;67:87–95.CrossRefGoogle Scholar
  26. 26.
    Alves CM, Yang Y, Carnes DL, Ong JL, Sylvia VL, Dean DD, et al. Modulating bone cells response onto starch-based biomaterials by surface plasma treatment and protein adsorption. Biomaterials. 2007;28:307–15.CrossRefGoogle Scholar
  27. 27.
    Mano JF, Reis RL. Viscoelastic monitoring of starch-based biomaterials in simulated physiological conditions. Mater Sci Eng A. 2004;370:321–5.CrossRefGoogle Scholar
  28. 28.
    Simoes RD, Job AE, Chinaglia DL, Zucolotto V, Camargo-Filho JC, Alves N, et al. Structural characterization of blends containing both PVDF and natural rubber latex. J Raman Spectrosc. 2005;36:1118–24.CrossRefGoogle Scholar
  29. 29.
    Kobayashi M, Tashiro K, Tadokoro H. Molecular vibrations of three cristal forms of Poly(vinylidene Fluoride). Macromolecules. 1975;8:158–71.CrossRefGoogle Scholar
  30. 30.
    Prabu AA, Lee JS, Kim KJ, Lee HS. Infrared spectroscopic studies on crystallization and Curie transition behavior of ultrathin films of P(VDF/TrFE) (72/28). Vib Spectrosc. 2006;41:1–13.CrossRefGoogle Scholar
  31. 31.
    Piza MA, Constantino CJL, Venâncio EC, Mattoso LHC. Interaction mechanism of poly (o-ethoxyaniline) and collagen blends. Polymer. 2003;44:5663–70.CrossRefGoogle Scholar
  32. 32.
    Sencadas V, Lanceros-Méndez S, Mano JF. Thermal characterization of a vinylidene fluoride-trifluorethylene (75–25) (%mol) copolymer film. J Non-Cryst Solids. 2006;352:5376–81.CrossRefGoogle Scholar
  33. 33.
    Botelho G, Lanceros-Mendez S, Goncalves AM, Sencadas V, Rocha JG. Relationship between processing conditions, defects and thermal degradation of poly(vinylidene fluoride) in the b-phase. J Non-Cryst Solids. 2008;354:72–8.CrossRefGoogle Scholar
  34. 34.
    Campos JSC, Ribeiro AA, Cardoso CX. Preparation and characterization of PVDF/CaCO3 composites. Mater Sci Eng B. 2007;136:123–8.CrossRefGoogle Scholar
  35. 35.
    Basset CAL. Biochem Physiol Bone. New York: Academic Press; 1971.Google Scholar
  36. 36.
    Linares A, Costa JL. Tensile and dynamic mechanical behaviour of polymer blends based on PVDF. Eur Polym J. 1997;33:467–73.CrossRefGoogle Scholar
  37. 37.
    Hatakeyama T, Liu Z, editors. Handbook of thermal analysis. New York: Wiley; 2000. p. 209.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • R. D. Simoes
    • 1
    • 2
  • M. A. Rodriguez-Perez
    • 2
    • 3
  • J. A. de Saja
    • 2
    • 3
  • C. J. L. Constantino
    • 1
  1. 1.DFQB, Faculdade de Ciências e TecnologiaUNESPPresidente PrudenteBrazil
  2. 2.Science Faculty, Condensed Matter Physics DepartmentCellular Materials Group (CellMat), University of ValladolidValladolidSpain
  3. 3.Unidad Asociada Instituto Estructura de la Materia (CSIC)MadridSpain

Personalised recommendations