Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 99, Issue 2, pp 501–507 | Cite as

Dynamic and controlled rate thermal analysis of halotrichite

  • Ray L. Frost
  • Sara J. Palmer
  • János Kristóf
  • Erzsébet Horváth
Article

Abstract

Three halotrichites namely halotrichite Fe2+SO4·Al2(SO4)3·22H2O, apjohnite Mn2+SO4·Al2(SO4)3·22H2O and dietrichite ZnSO4·Al2(SO4)3·22H2O, were analysed by both dynamic, controlled rate thermogravimetric and differential thermogravimetric analysis. Because of the time limitation in the controlled rate experiment of 900 min, two experiments were undertaken (a) from ambient to 430 °C and (b) from 430 to 980 °C. For halotrichite in the dynamic experiment mass losses due to dehydration were observed at 80, 102, 319 and 343 °C. Three higher temperature mass losses occurred at 621, 750 and 805 °C. In the controlled rate thermal analysis experiment two isothermal dehydration steps are observed at 82 and 97 °C followed by a non-isothermal dehydration step at 328 °C. For apjohnite in the dynamic experiment mass losses due to dehydration were observed at 99, 116, 256, 271 and 304 °C. Two higher temperature mass losses occurred at 781 and 922 °C. In the controlled rate thermal analysis experiment three isothermal dehydration steps are observed at 57, 77 and 183 °C followed by a non-isothermal dehydration step at 294 °C. For dietrichite in the dynamic experiment mass losses due to dehydration were observed at 115, 173, 251, 276 and 342 °C. One higher temperature mass loss occurred at 746 °C. In the controlled rate thermal analysis experiment two isothermal dehydration steps are observed at 78 and 102 °C followed by three non-isothermal dehydration steps at 228, 243 and 323 °C. In the CRTA experiment a long isothermal step at 636 °C attributed to de-sulphation is observed.

Keywords

Evaporite Jarosite Halotrichite Sulphate CRTA 

Notes

Acknowledgements

This research was supported by the Hungarian Scientific Research Fund (OTKA) under grant No. K62175. The financial and infra-structure support of the Queensland University of Technology Inorganic Materials Research Program is gratefully acknowledged.

References

  1. 1.
    Sebor J. Bilinite, a new Bohemian mineral. Prag II: Sbornik Klubu prirodovedeckeho; 1913. 2 pp.Google Scholar
  2. 2.
    Caven RM, Mitchell TC. Equilibrium in systems of the type Al2(SO4)3−MIISO4-H2O. I. Aluminium sulfate-copper sulfate-water, and aluminium sulfate-manganous sulfate-water, at 30 Deg. J Chem Soc Trans. 1925;127:527–31.CrossRefGoogle Scholar
  3. 3.
    Schurmann HME. Sulfates of magnesium, aluminium and manganese from the Miocene gypsum of Gemsah, east Arabian-Egyptian desert. Neues Jahrb Mineral. 1933;66A:425–32.Google Scholar
  4. 4.
    Baur GS, Sand LB. X-ray powder data for ulexite and halotrichite. Am Mineral. 1957;42:676–8.Google Scholar
  5. 5.
    Velinov I, Aslanyan S, Punev L, Velinova M. Ferrous sulphates, halotrichite, and alunogen from the oxidation zone of the hydrothermally altered volcanic rocks near Krousha village, Sofia District. Izvestiya na Geologicheskiya Institut, Bulgarska Akademiya na Naukite, Seriya Geokhimiya, Mineralogiya i Petrografiya. 1970;19:243–65.Google Scholar
  6. 6.
    Cody RD, Biggs DL. Halotrichite, szomolnokite, and rozenite from Dolliver State Park, Iowa. Can Mineral. 1973;11:958–70.Google Scholar
  7. 7.
    Frost RL, Weier ML, Kloprogge JT, Rull F, Martinez-Frias J. Raman spectroscopy of halotrichite from Jaroso, Spain. Spectrochim Acta. 2005;62A:176–80.Google Scholar
  8. 8.
    Frost RL, Wain DL, Reddy BJ, Martens W, Martinez-Frias J, Rull F. Sulphate efflorescent minerals from the El Jaroso ravine, Sierra Almagrera, Spain—a scanning electron microscopic and infrared spectroscopic study. J Near Infrared Spectrosc. 2006;14:167–78.CrossRefGoogle Scholar
  9. 9.
    Xi Y, Zhou Q, Frost RL, He H. Thermal stability of octadecyltrimethylammonium bromide modified montmorillonite organoclay. J Colloid Interface Sci. 2007;311:347–53.CrossRefGoogle Scholar
  10. 10.
    Williams SA, Cesbron FP. Wupatkiite from the Cameron uranium district, Arizona, a new member of the halotrichite group. Mineral Mag. 1995;59:553–6.CrossRefGoogle Scholar
  11. 11.
    Menchetti S, Sabelli C. The halotrichite group: the crystal structure of apjohnite. Mineral Mag. 1976;40:599–608.CrossRefGoogle Scholar
  12. 12.
    Ballirano P, Bellatreccia F, Grubessi O. New crystal-chemical and structural data of dietrichite, ideally ZnAl2(SO4)4·22H2O, a member of the halotrichite group. Eur J Mineral. 2003;15:1043–9.CrossRefGoogle Scholar
  13. 13.
    Ballirano P. Crystal chemistry of the halotrichite group XAl2(SO4)4·22H2O: the X = Fe- Mg-Mn-Zn compositional tetrahedron. Eur J Mineral. 2006;18:463–9.CrossRefGoogle Scholar
  14. 14.
    Krstanovic I, Dimitrijevic R, Ilic P. Crystallographic study of halotrichite from Suplja Stena, Avala Mountain. Glasnik Prirodnjackog Muzeja u Beogradu, Serija A: Mineralogija, Geologija, Paleontologija. 1972;27:11–5.Google Scholar
  15. 15.
    Quartieri S, Triscari M, Viani A. Crystal structure of the hydrated sulfate pickeringite [MgAl2(SO4)4·22H2O]: X-ray powder diffraction study. Eur J Mineral. 2000;12:1131–8.Google Scholar
  16. 16.
    Nagai S, Yamanouchi N. Potassium ore jarosite. I. Properties of jarosite and leaching test of potassium portion. Nippon Kagaku Kaishi (1921-47). 1949;52:83–6.Google Scholar
  17. 17.
    Kulp JL, Adler HH. Thermal study of jarosite. Am J Sci. 1950;248:475–87.Google Scholar
  18. 18.
    Cocco G. Differential thermal analysis of some sulfate minerals. Period Miner. 1952;21:103–38.Google Scholar
  19. 19.
    Tsvetkov AI, Val’yashikhina EP. Thermal characteristics of minerals of the alunite group. Dokl Akad Nauk SSSR. 1953;89:1079–82.Google Scholar
  20. 20.
    Tsvetkov AI, Val’yashikhina EP. Phase conversions of hydrated iron sulfates (fibroferrite, Fe(SO4)(OH)·4.5H2O, and melanterite, FeSO4·7H2O) by heating. Dokl Akad Nauk SSSR. 1953;93:343–6.Google Scholar
  21. 21.
    Swamy MSR, Prasad TP, Sant BR. Thermal analysis of ferrous sulfate heptahydrate in air. II. The oxidation-decomposition path. J Therm Anal Calorim. 1979;16:471–8.CrossRefGoogle Scholar
  22. 22.
    Swamy MSR, Prasad TP, Sant BR. Thermal analysis of ferrous sulfate heptahydrate in air. I. Some general remarks and methods. J Therm Anal Calorim. 1979;15:307–14.CrossRefGoogle Scholar
  23. 23.
    Bhattacharyya S, Bhattacharyya SN. Heat capacity and enthalpy of the ternary system ferrous sulfate heptahydrate, sulfuric acid, and water. J Chem Eng Data. 1979;24:93–6.CrossRefGoogle Scholar
  24. 24.
    Swami MSR, Prasad TP. Thermal analysis of iron(II) sulfate heptahydrate in air. III. Thermal decomposition of intermediate hydrates. J Therm Anal Calorim. 1980;19:297–304.CrossRefGoogle Scholar
  25. 25.
    Swamy MSR, Prasad TP. Thermal analysis of iron(II) sulfate heptahydrate in air. V. Thermal decomposition of hydroxy and oxysulfates. J Therm Anal Calorim. 1981;20:107–14.CrossRefGoogle Scholar
  26. 26.
    Banerjee AC, Sood S. Thermal analysis of basic ferric sulfate and its formation during oxidation of iron pyrite. In: Thermal analysis: proceedings of the 7th international conference, vol. 1; 1982. p. 769–74.Google Scholar
  27. 27.
    Frost RL, Hales MC, Martens WN. Thermogravimetric analysis of selected group (II) carbonate minerals—implication for the geosequestration of greenhouse gases. J Therm Anal Calorim. 2009;95:999–1005.CrossRefGoogle Scholar
  28. 28.
    Palmer SJ, Spratt HJ, Frost RL. Thermal decomposition of hydrotalcites with variable cationic ratios. J Therm Anal Calorim. 2009;95:123–9.CrossRefGoogle Scholar
  29. 29.
    Carmody O, Frost R, Xi Y, Kokot S. Selected adsorbent materials for oil-spill cleanup. A thermoanalytical study. J Therm Anal Calorim. 2008;91:809–16.CrossRefGoogle Scholar
  30. 30.
    Frost RL, Locke A, Martens WN. Thermogravimetric analysis of wheatleyite Na2Cu2+(C2O4)2·2H2O. J Therm Anal Calorim. 2008;93:993–7.CrossRefGoogle Scholar
  31. 31.
    Frost RL, Locke AJ, Hales MC, Martens WN. Thermal stability of synthetic aurichalcite. Implications for making mixed metal oxides for use as catalysts. J Therm Anal Calorim. 2008;94:203–8.CrossRefGoogle Scholar
  32. 32.
    Frost RL, Locke AJ, Martens W. Thermal analysis of beaverite in comparison with plumbojarosite. J Therm Anal Calorim. 2008;92:887–92.CrossRefGoogle Scholar
  33. 33.
    Frost RL, Wain D. A thermogravimetric and infrared emission spectroscopic study of alunite. J Therm Anal Calorim. 2008;91:267–74.CrossRefGoogle Scholar
  34. 34.
    Hales MC, Frost RL. Thermal analysis of smithsonite and hydrozincite. J Therm Anal Calorim. 2008;91:855–60.CrossRefGoogle Scholar
  35. 35.
    Palmer SJ, Frost RL, Nguyen T. Thermal decomposition of hydrotalcite with molybdate and vanadate anions in the interlayer. J Therm Anal Calorim. 2008;92:879–86.CrossRefGoogle Scholar
  36. 36.
    Vagvoelgyi V, Daniel LM, Pinto C, Kristof J, Frost RL, Horvath E. Dynamic and controlled rate thermal analysis of attapulgite. J Therm Anal Calorim. 2008;92:589–94.CrossRefGoogle Scholar
  37. 37.
    Vagvolgyi V, Frost RL, Hales M, Locke A, Kristof J, Horvath E. Controlled rate thermal analysis of hydromagnesite. J Therm Anal Calorim. 2008;92:893–7.CrossRefGoogle Scholar
  38. 38.
    Vagvolgyi V, Hales M, Martens W, Kristof J, Horvath E, Frost RL. Dynamic and controlled rate thermal analysis of hydrozincite and smithsonite. J Therm Anal Calorim. 2008;92:911–6.CrossRefGoogle Scholar
  39. 39.
    Zhao Y, Frost RL, Vagvolgyi V, Waclawik ER, Kristof J, Horvath E. XRD, TEM and thermal analysis of yttrium doped boehmite nanofibres and nanosheets. J Therm Anal Calorim. 2008;94:219–26.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • Ray L. Frost
    • 1
  • Sara J. Palmer
    • 1
  • János Kristóf
    • 2
  • Erzsébet Horváth
    • 3
  1. 1.Inorganic Materials Research Program, School of Physical and Chemical SciencesQueensland University of TechnologyBrisbaneAustralia
  2. 2.Department of Analytical ChemistryUniversity of PannoniaVeszprémHungary
  3. 3.Department of Environmental Engineering and Chemical TechnologyUniversity of PannoniaVeszprémHungary

Personalised recommendations