Effect of Er2O3 on thermal stability of oxyfluoride glass

  • Marcin ŚrodaEmail author


Glasses have been synthesized in the system SiO2–Al2O3–Na2O–AlF3–LaF3–Er2O3. A base glass (in mol% 67SiO2–9Al2O3–20Na2O–Al2F6–3La2F6) was modified by 0.5, 0.75, 1, 1.25, 1.5, 2 and 5 mol% Er2O3, respectively. Glasses were prepared by conventional fusion method from 20 g batches. The glass transition temperature (T g), the jump-like changes of the specific heat (ΔC p) accompanying the glass transition and the enthalpy of crystallization (ΔH) were calculated. DTA measurements clearly reveal that the increase of the Er2O3 content in the glass changes the effects of crystallization and diminishes the thermal stability of the glassy network. In the same time the changes in the transition temperature are observed. The formation of NaLaF4 and Na1.45La9.31(SiO4)6(F0.9O1.1) as a main phase was confirmed. The diminishing of the thermal stability was connected with erbium which incorporated into Na1.45La9.31(SiO4)6(F0.9O1.1) structure.


Aluminosilicate glass DTA/DSC Erbium oxide LaF3 Oxyfluoride glass Thermal stability 



The work was supported by the Polish Ministry of Education and Science, grant No. 3T08D04829.


  1. 1.
    Mortier M, Bensalah A, Dantelle G, Patriarche G, Vivien D. Rare-earth doped oxyfluoride glass-ceramics and fluoride ceramics: synthesis and optical properties. Opt Mater. 2007;29:1263–70.CrossRefGoogle Scholar
  2. 2.
    Kam CH, Buddhudu S. Photoluminescence properties of Eu3+:ZrF4-BaF2-LaF3-YF3-AlF3-NaF glasses. Phys B: Phys Condens Matter. 2004;344(1–4):182–9.CrossRefGoogle Scholar
  3. 3.
    Becker PC, Olsson NA, Simpson JR. Erbium-doped fiber amplifier: fundamentals and technology. San Diego, CA: Academic Press; 1999.Google Scholar
  4. 4.
    Miniscalco WJ. Erbium-doped glasses for fibre amplifiers at 1500 nm. J Lightwave Technol. 1991;9:234–50.CrossRefGoogle Scholar
  5. 5.
    Marcus MA, Polman A. Local structure around Er in silica and sodium-silicate glasses. J Non-Cryst Solids. 1991;136:260–5.CrossRefGoogle Scholar
  6. 6.
    Neeves AE, Bruce AJ, Reed WA, Rabinovich EM, Grodkiewicz WH, Kopylov NA, et al. Effect of concentration, host glass composition, and processing on the absorption and emission of Er+3 ions in sodium silicate glasses. In: Bruce AJ, Hiremath BV, editors. Solid state optical materials, vol. 28. Westerville, OH: American Ceramic Society; 1992. p. 353–67.Google Scholar
  7. 7.
    Du J, Cormack AN. The structure of erbium doped sodium silicate glasses. J Non-Cryst Solids. 2005;351:2263–76.CrossRefGoogle Scholar
  8. 8.
    Delben RJ, Chaves DR, Candelorio PD, Delben AAST. Glass forming ability and thermal stability in the system ZrF46BaF26PrF3. J Therm Anal Calorim. 2006;83:411–4.CrossRefGoogle Scholar
  9. 9.
    Reben M, Wacławska I, Paluszkiewicz C, Środa M. Thermal and structural studies of nanocrystallization of oxyfluoride glasses. J Therm Anal Calorim. 2007;88:285–9.CrossRefGoogle Scholar
  10. 10.
    Dejneka MJ, Transparent oxyfluoride glass ceramics. MRS Bulletin, November 1998, 57–62.Google Scholar
  11. 11.
    Tikhomirov K, Furniss D, Seddon AB, Reaney IM, Beggiora M, Ferrari M, et al. Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxyfluoride glass-ceramics. Appl Phys Lett. 2002;81(11):1937–9.CrossRefGoogle Scholar
  12. 12.
    Środa M. Effect of LaF3 admixture on thermal stability of borosilicate glasses. J Therm Anal Calorim. 2007;88:245–9.CrossRefGoogle Scholar
  13. 13.
    Volf MB. Chemical approach to glass, glass science and technology, vol. 7. Elsevier, Amsterdam; 1984.Google Scholar
  14. 14.
    Mortier M, Patriarche G. Structural characterisation of transparent oxyfluoride glass-ceramics. J Mater Sci. 2000;35:4849–56.CrossRefGoogle Scholar
  15. 15.
    Dantelle G, Mortier M, Vivien D, Patriarche G. Nucleation efficiency of erbium and ytterbium fluorides in transparent oxyfluoride glass-ceramics. J Mater Res. 2005;20(2):472–81.CrossRefGoogle Scholar
  16. 16.
    Handke M, Mozgawa W. Vibrational spectroscopy of the amorphous silicates. Vibrat Spect. 1993;5:75–84.CrossRefGoogle Scholar
  17. 17.
    Tarte P. Infrared spectra of inorganic aluminates and characteristic vibrational frequencies of AlO4 tetrahedra and AlO6 octahedra. Spectrochim Acta. 1967;A23:2127–43.Google Scholar
  18. 18.
    Handke M, Mozgawa W. Model quasi-molecule Si2O as an approach in the IR spectra description glassy and crystalline framework silicates. J Mol Struct. 1995;348:341–4.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  1. 1.Faculty of Material Science and CeramicsAGH-University of Science and TechnologyKrakówPoland

Personalised recommendations