Energetic studies of two oxygen heterocyclic compounds Xanthone and tetrahydro-γ-pyrone

  • Vera L. S. Freitas
  • José R. B. Gomes
  • Maria D. M. C. Ribeiro da Silva
Article

Abstract

The present work reports an experimental thermochemical study supported by state of the art calculations of two heterocyclic compounds containing oxygen in the ring: xanthone and tetrahydro-γ-pyrone. The standard (pº = 0.1 MPa) molar enthalpies of formation in the condensed phase, at T = 298.15 K, were derived from the measurements of the standard molar energies of combustion in oxygen atmosphere, using a static bomb calorimeter. The standard molar enthalpies of sublimation or vaporization, at T = 298.15 K, of the title compounds were obtained from Calvet microcalorimetry measurements. These values were used to derive the standard enthalpies of formation of the compounds in the gas-phase at the same temperature, which were compared with estimated data from G3(MP2)//B3LYP computations.

Keywords

Calvet microcalorimetry Combustion calorimetry Enthalpy of formation Enthalpies of transition G3(MP2)//B3LYP calculations Heat capacities 

Supplementary material

10973_2009_233_MOESM1_ESM.pdf (57 kb)
Supplementary material 1 (PDF 56 kb)

References

  1. 1.
    http://webbook.nist.gov. Accessed Sept 20 2008.
  2. 2.
    Woo S, Jung J, Lee C, Kwon Y, Na Y. Synthesis of new xanthone analogues and their biological activity test—Cytotoxicity, topoisomerase II inhibition, and DNA cross-linking study. Bioorg Med Chem Lett. 2007;17:1163–6.CrossRefGoogle Scholar
  3. 3.
    Castanheiro RAP, Pinto MMM, Silva AMS, Cravo SMM, Gales L, Damas AM, et al. Dihydroxyxanthones prenylated derivatives: Synthesis, structure elucidation, and growth inhibitory activity on human tumor cell lines with improvement of selectivity for MCF-7. Bioorg Med Chem. 2007;15:6080–8.CrossRefGoogle Scholar
  4. 4.
    Maia F, Alemida MR, Gales L, Kijjoa A, Pinto MMM, Saraiva MJ, et al. The binding of xanthone derivatives to transthyretin. Biochem Pharmacol. 2005;70:1861–9.CrossRefGoogle Scholar
  5. 5.
    Pinto MMM, Sousa ME, Nascimento MSJ. Xanthone derivatives: new insights in biological activities. Curr Med Chem. 2005;12:2517–38.CrossRefGoogle Scholar
  6. 6.
    Teixeira M, Afonso MJ, Pinto MMM, Barbosa CM. Development and characterization of PLGA nanospheres and nanocapsules containing xanthone and 3-methoxyxanthone. Eur J Pharm Biopharm. 2005;59:491–500.CrossRefGoogle Scholar
  7. 7.
    Pedro M, Cerqueira F, Sousa ME, Nascimento MSJ, Pinto MMM. Xanthones as inhibitors of growth of human cancer cell lines and their effects on the proliferation of human lymphocytes in vitro. Bioorg Med Chem. 2002;10:3725–30.CrossRefGoogle Scholar
  8. 8.
    Dharmaratne HRW, Wijesinghe WMNM, Thevanasem V. Antimicrobial activity of xanthones from Calophyllum species, against methicillin-resistant Staphylococcus aureus (MRSA). J Ethnopharmacol. 1999;66:339–42.CrossRefGoogle Scholar
  9. 9.
    Kim KY, Winans RE, Hubbard WN, Johnson CE. Thermochemistry of coal components. 1. Xanthone. J Phys Chem. 1978;82:402–5.CrossRefGoogle Scholar
  10. 10.
    Sabbah R, El Watik L. Etude thermodynamique de deux molecules simples rencontrées dans les produits issus de la pyrolyse du charbon: chromone et xanthene. Bull Soc Chim. 1998;4:626–30.Google Scholar
  11. 11.
    Onuma BS, Iijima K, Oonishi I. Structure of xanthone. Acta Cryst. 1990;C46:1725–7.Google Scholar
  12. 12.
    Aldrich. Handbook of fine chemicals. 2007/2008, España, Portugal.Google Scholar
  13. 13.
    Gundry HA, Harrop D, Head AJ, Lewis GB. Thermodynamic properties of organic oxygen compounds 21. Enthalpies of combustion of benzoic acid, pentan-1-ol, octan-1-ol, and hexadecan-1-ol. J Chem Thermodyn. 1969;1:321–32.CrossRefGoogle Scholar
  14. 14.
    Bickerton J, Pilcher G, Al-Takhin G. Enthalpies of combustion of the three aminopyridines and the three cyanopyridines. J Chem Thermodyn. 1984;16:373–8.CrossRefGoogle Scholar
  15. 15.
    Ribeiro da Silva MDMC, Santos LMNBF, Silva ALR, Fernandes O, Acree WE Jr. Energetics of 6-methoxyquinoline and 6-methoxyquinoline N-oxide: the dissociation enthalpy of the (N–O) bond. J Chem Thermodyn. 2003;35:1093–100.CrossRefGoogle Scholar
  16. 16.
    Skinner HA, Snelson A. The heats of combustion of the four isomeric butyl alcohols. Trans Faraday Soc. 1960;56:1776–83.CrossRefGoogle Scholar
  17. 17.
    Sousa EA. Ph D Dissertation, Faculty of Science, University of Porto; 2005.Google Scholar
  18. 18.
    Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, Churney KL, Nuttal RL. The NBS tables of chemical thermodynamics properties. J Phys Chem Ref Data 1982;II:Suppl 2.Google Scholar
  19. 19.
    Washburn EN. Standard states for bomb calorimetry. J Res Nat Bur Stand (US). 1933;10:525–58.Google Scholar
  20. 20.
    Hubbard WN, Scott DW, Waddington G. Standard states and corrections for combustions in a bomb at constant volume. In: Rossini FD, editor. Experimental thermochemistry, vol. 1. New York: Interscience; 1956. p. 75–128.Google Scholar
  21. 21.
    Adedeji FA, Brown DLS, Connor JA, Leung WL, Paz-Andrade IM, Skinner HA. Thermochemistry of arene chromium tricarbonyls and the strengths of arene-chromium bonds. J Organomet Chem. 1975;97:221–8.CrossRefGoogle Scholar
  22. 22.
    Ribeiro da Silva MAV, Matos MAR, Amaral LMPF. Thermochemical study of 2-, 4-, 6-, and 8-methylquinoline. J Chem Thermodyn. 1995;27:565–74.CrossRefGoogle Scholar
  23. 23.
    Santos LMNBF, Schröder B, Fernandes OOP, Ribeiro da Silva MAV. Measurement of enthalpies of sublimation by drop method in a Calvet type calorimeter: design and test of a new system. Thermochim Acta. 2004;415:15–20.CrossRefGoogle Scholar
  24. 24.
    Sabbah R, Xu-wu A, Chickos JS, Planas Leitão ML, Roux MV, Torres LA. Reference materials for calorimetry and differential thermal analysis. Thermochim Acta. 1999;331:93–208.CrossRefGoogle Scholar
  25. 25.
    Ribeiro da Silva MAV, Monte MJS, Santos LMNBF. The design, construction, and testing of a new Knudsen effusion apparatus. J Chem Thermodyn. 2006;38:778–87.CrossRefGoogle Scholar
  26. 26.
    Wieser ME. Atomic weights of the elements 2005 (IUPAC technical report). Pure Appl Chem. 2006;78:2051–66.CrossRefGoogle Scholar
  27. 27.
    Gaussian 03 Revision C.01. Gaussian Inc., Wallingford CT; 2004.Google Scholar
  28. 28.
    Baboul AG, Curtiss LA, Redfern PC, Raghavachari K. Gaussian-3 theory using density functional geometries and zero-point energies. J Chem Phys. 1999;110:7650–7.CrossRefGoogle Scholar
  29. 29.
    Cox JD, Wagman DD, Medvedev VA. CODATA key values for thermodynamics. New York: Hemisphere; 1989.Google Scholar
  30. 30.
    Irikura KK. THERMO.PL National Institute of Standards and Technology; 2002.Google Scholar
  31. 31.
    Iijima K, Misu T, Ohnishi S, Onuma S. The molecular structure of xanthene as studied by gas-phase electron diffraction. J Mol Struct. 1989;213:263–9.CrossRefGoogle Scholar
  32. 32.
    Sousa CCS. Ph. D. Dissertation, Faculty of Science, University of Porto; 2008.Google Scholar
  33. 33.
    Pedley JB. Thermochemical data and structures of organic compounds. Texas, College Station: Thermodynamics Research Centre; 1994.Google Scholar
  34. 34.
    Cox JD, Pilcher G. Thermochemistry of organic & organometallic compounds. London and New York: Academic Press; 1970.Google Scholar
  35. 35.
    Ribeiro da Silva MAV, Cabral JITA. Thermochemistry of some derivatives of 2- and 4-piperidone. J Chem Eng Data. 2006;51:1556–61.CrossRefGoogle Scholar
  36. 36.
    Ribeiro da Silva MAV, Cabral JITA, Gomes P, Gomes JRB. Combined experimental and computational study of the thermochemistry of methylpiperidines. J Org Chem. 2006;71:3677–85.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • Vera L. S. Freitas
    • 1
  • José R. B. Gomes
    • 2
  • Maria D. M. C. Ribeiro da Silva
    • 1
  1. 1.Centro de Investigação em Química, Departamento de Química, Faculdade de CiênciasUniversidade do PortoPortoPortugal
  2. 2.CICECO, University of AveiroAveiroPortugal

Personalised recommendations