Journal of Thermal Analysis and Calorimetry

, Volume 99, Issue 2, pp 551–561 | Cite as

Study of the thermooxidative degradation kinetics of poly(tetrafluoroethene) using iso-conversional calculation procedure

  • S. D. Genieva
  • L. T. Vlaev
  • A. N. Atanassov


The thermooxidative degradation kinetics of poly(tetrafluoroethene) (PTFE) in air flow has been studied at different heating rates (6, 10, 12 and 15 K min−1) by non-isothermal differential thermal analysis (DTA). Six calculation procedures based on single TG curves and iso-conversional method, as well as 27 mechanism functions were used. The comparison of the results obtained with these calculation procedures showed that they strongly depend on the selection of proper mechanism function for the process. Therefore, it is very important to determine the most probable mechanism function. In this respect the iso-conversional calculation procedure turned out to be more appropriate. In the present work, the values of apparent activation energy E, pre-exponential factor A in Arrhenius equation, as well as the changes of entropy ΔS , enthalpy ΔH and free Gibbs energy ΔG for the formation of the activated complex from the reagent are calculated. All calculations were performed using programs compiled by ourselves.


Kinetic parameters Non-isothermal kinetics Thermogravimetric analysis Thermooxidative degradation Poly(tetrafluoroethene) 


  1. 1.
    Conesa JA, Font R. Polytetrafluoroethylene decomposition in air and nitrogen. Polym Eng Sci. 2001;41:2137–47.CrossRefGoogle Scholar
  2. 2.
    Simon CM, Kaminsky W. Chemical recycling of polytetrafluoroethylene by pyrolysis. Polym Degrad Stab. 1998;62:1–7.CrossRefGoogle Scholar
  3. 3.
    Baker BB, Kasprzak DJ. Thermal degradation of commercial fluoropolymers in air. Polym Degrad Stab. 1993; 42:181–8.CrossRefGoogle Scholar
  4. 4.
    Ksiazczak A, Boniuk H, Cudzilo S. Thermal decomposition of PTFE in the presence of silicon, calcium silicide, ferrosilicon and iron. J Therm Anal Calorim. 2003;74:569–74.CrossRefGoogle Scholar
  5. 5.
    van der Walt IJ, Neomagus HWJP, Nel JT, Bruinsma OSL, Crouse PL. A kinetic expression for the pyrolytic decomposition of polytetrafluoroethylene. J Fluorine Chem. 2008;129:314–8.CrossRefGoogle Scholar
  6. 6.
    Garcia AN, Viciano N, Font R. Products obtained in the fuel-rich combustion of PTFE at high temperature. J Anal Appl Pyrolysis. 2007;80:85–91.CrossRefGoogle Scholar
  7. 7.
    Meissner E, Worolewska A, Milchert E. Technological parameters of pyrolysis of waste polytetrafluoroethylene. Polym Degrad Stab. 2004;83:163–72.CrossRefGoogle Scholar
  8. 8.
    Ebrachimi-Kahrizsangi R, Abbasi MH. Evaluation of reliability of Coats-Redfern method for kinetic analysis of non-isothermal TGA. Trans Nonferrous Met Soc China. 2008;18:217–21.CrossRefGoogle Scholar
  9. 9.
    Lipskis AA, Kviklis AV, Lipskene AM, Machynlis AN. Calculation of kinetic parameters of the thermal decomposition of polymers. Polym Sci USSR. 1976;18:489–95.CrossRefGoogle Scholar
  10. 10.
    Budrugeac P, Segal E. Thermooxidative degradation of an unsaturated polyester resin. J Therm Anal. 1997;49:183–91.CrossRefGoogle Scholar
  11. 11.
    Chiriac M, Rosu A, Dumitras M, Odochian L. Some aspects of the thermokinetic nonisothermal study on the thermooxidative degradation polytetrafluotoethylene containing additives. Iranian Ploym J. 2003;12:165–70.Google Scholar
  12. 12.
    Howell B, Zhang J. Thermal degradation of vinylidene chloride/vinyl chloride copolymers in the presence of N-substituted maleimides. J Therm Anal Calorim. 2006;83:83–6.CrossRefGoogle Scholar
  13. 13.
    Vyazovkin S. Model-free kinetics. Staying free of multiplying entities without necessity. J Therm Anal Calorim. 2006;83:45–51.CrossRefGoogle Scholar
  14. 14.
    Vlaev LT, Georgieva VG, Genieva SD. Products and kinetics of non-isothermal decomposition of vanadium(IV) oxide compounds. J Therm Anal Calorim. 2007;88(3):805–12.CrossRefGoogle Scholar
  15. 15.
    Ozawa T. A new method of analyzing thermogravimetric data. Bul Chem Soc Japan. 1965;38:1881–6.CrossRefGoogle Scholar
  16. 16.
    Paik P, Kar KK. Kinetics of thermal degradation and estimation of lifetime for polypropylene particle: effect of particle size. Polym Degrad Stab. 2008:93:24–35CrossRefGoogle Scholar
  17. 17.
    Flynn JH. The ‘Temperature Integral’—its use and abuse. Thermochim Acta. 1997;300:83–92.CrossRefGoogle Scholar
  18. 18.
    Chrissafis K. Kinetics of thermal degradation of polymers. Complementary use of isoconversional and model-fitting methods. J Therm Anal Calorim. 2009;95:273–83.CrossRefGoogle Scholar
  19. 19.
    Cadenato A, Morancho JM, Fernandez-Francos X, Salla JM, Ramis X. Comparative kinetic study of the non-isothermal thermal curing of bis-GMA/TEGDMA systems. J Therm Anal Calorim. 2007;89:233–44.CrossRefGoogle Scholar
  20. 20.
    Popescu C. Integral method to analyze the kinetics of heterogeneous reactions under nonisothermal conditions A variant on the Ozawa-Flynn-Wall method. Thermochim Acta. 1996;285:309–23.CrossRefGoogle Scholar
  21. 21.
    Šesták J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12.CrossRefGoogle Scholar
  22. 22.
    Liqing L, Donghua C. Application of iso-temperature method of multiple rate to kinetic analysis. J Therm Anal Calorim. 2004;78:283–93.CrossRefGoogle Scholar
  23. 23.
    Heide K, Höland W, Gölker H, Seyfarth K, Müller B, Sauer R. Die bestimmung kinetischer parameter endothermer zersetzungsreaktionen unter nicht-isothermen bedingungen. Thermochim Acta. 1975;13:365–78.CrossRefGoogle Scholar
  24. 24.
    Zhang JJ, Ge LG, Zha XL, Dai YJ, Chen HL, Mo LP. Thermal decomposition kinetics of the Zn(II) complex with norfloxacin in static air atmosphere. J Therm Anal Calorim. 1999;58:269–78.CrossRefGoogle Scholar
  25. 25.
    Horowitz HH, Metzger G. A new analysis of thermogravimetric traces. Anal Chem. 1963;35:1464–8.CrossRefGoogle Scholar
  26. 26.
    Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature (London). 1964;201:68–9.CrossRefGoogle Scholar
  27. 27.
    Madhusudanan PM, Krishnan K, Ninan KN. New approximation for the p(x) function in the evaluation of non-isothermal kinetic data. Thermochim Acta. 1986;97:189–201.CrossRefGoogle Scholar
  28. 28.
    Madhusudanan PM, Krishnan K, Ninan KN. New equations for kinetic analysis of nonisothermal reactions. Thermochim Acta. 1993;221:13–21.CrossRefGoogle Scholar
  29. 29.
    Tang W, Liu Y, Zhang H, Wang C. New approximate formula for Arrhenius temperature integral. Thermochim Acta. 2003;408:39–43.CrossRefGoogle Scholar
  30. 30.
    Wanjun T, Yuwen L, Hen Z, Zhiyong W, Cunxin W. New temperature integral approximate formula for non-isothermal kinetic analysis. J Therm Anal Calorim. 2003;74:309–15.CrossRefGoogle Scholar
  31. 31.
    Budrugeac P, Segal E. Some methodological problems concerning nonisothermal kinetic analysis of heterogeneous solid-gas reactions. Int J Chem Kinet. 2001;33:564–73.CrossRefGoogle Scholar
  32. 32.
    Gao Z, Amasaki I, Nakada M. A description of kinetics of thermal decomposition of calcium oxalate monohydrate by means of the accommodated Rn model. Thermochim Acta. 2002;385:95–103.CrossRefGoogle Scholar
  33. 33.
    Chunxiu G, Yufang S, Donghua C. Comparative method to evaluate reliable kinetic triplets of thermal decomposition reactions. J Therm Anal Calorim. 2006;76:203–16.CrossRefGoogle Scholar
  34. 34.
    Su T-T, Jiang H, Gong H. Thermal stabilities and the thermal degradation kinetics of poly(ε-Caprolactone). Polymer-Plastics Technol Eng. 2008;47:398–403.CrossRefGoogle Scholar
  35. 35.
    Senum GI, Yang RT. Rational approximations of the integral of the Arrhenius function. J Therm Anal. 1977;11:445–7.CrossRefGoogle Scholar
  36. 36.
    Cordes HF. The preexponential factors for solid-state thermal decomposition. J Phys Chem. 1968;72:2185–9.CrossRefGoogle Scholar
  37. 37.
    Criado JM, Pérez-Maqueda LA, Sánchez-Jiménez PE. Dependence of the preexponential factor on temperature. Errors in the activation energies calculated by assuming that A is constant. J Therm Anal Calorim. 2005;82:671–5.CrossRefGoogle Scholar
  38. 38.
    Nikolaev AV, Logvinenko VA, Gorbatchov VM, Miachina LI. On the correction of some models regarding the relationship of the kinetic parameters from the conditions of the nonisothermic experiment. Thermal analysis. In: Proceedings of the fourth ICTA, Budapest, Hungary, vol. 1; 1974. p. 47–55.Google Scholar
  39. 39.
    Zmijevski T, Pysiak J. Compensation effect in thermal dissociation processes. Thermal analysis. In: Proceedings of the fourth ICTA, Budapest, Hungary, vol. 1; 1974. p. 205–11.Google Scholar
  40. 40.
    Koga N, Tanaka H. A kinetic compensation effect established for the thermal decomposition of a solid. J Therm Anal Calorim. 1991;37:347–63.CrossRefGoogle Scholar
  41. 41.
    Turmanova SCh, Genieva SD, Dimitrova AS, Vlaev LT. Non-isothermal degradation kinetics of filled with rice husk ash polypropene composites. Express Polym Lett. 2008;2:133–46.CrossRefGoogle Scholar
  42. 42.
    Dias DS, Crespi MS, Ribeiro CA, Fernandes JLS, Cerqueira HMG. Application of nonisothermal cure kinetics on the interaction of poly(ethylene terephthalate)—Alkyd resin paints. J Therm Anal Calorim. 2008;91:409–12.CrossRefGoogle Scholar
  43. 43.
    Dias DS, Crespi MS, Ribeiro CA. Non-isothermal decomposition kinetics of the interaction of poly(ethylene terephthalate) with alkyd varnish. J Therm Anal Calorim. 2008;94:539–43.CrossRefGoogle Scholar
  44. 44.
    Ruvolo-Filho A, Curti PS. Chemical kinetic model and thermodynamic compensation effect of alkaline hydrolysis of waste poly(ethylene terephthalate) in nonaqueous ethylene glycol solution. Ind. Eng Chem Res. 2006;45:7985–96.CrossRefGoogle Scholar
  45. 45.
    Frost AA, Pearson RG. Kinetics and mechanism of chemical reactions. New York: John Wiley and Sons; 1961.Google Scholar
  46. 46.
    Sokolskii DV, Druz VA. Vvedenie v teoriy geterogenogo kataliza. Moscow: Vischaya Shkola; 1981. (in Russian).Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • S. D. Genieva
    • 1
  • L. T. Vlaev
    • 1
  • A. N. Atanassov
    • 2
  1. 1.Department of Physical ChemistryAssen Zlatarov UniversityBourgasBulgaria
  2. 2.Department of Materials ScienceAssen Zlatarov UniversityBourgasBulgaria

Personalised recommendations