Journal of Thermal Analysis and Calorimetry

, Volume 99, Issue 2, pp 443–457 | Cite as

The influence of mixed anionic composition of Mg–Al hydrotalcites on the thermal decomposition mechanism based on in situ study

  • Agnieszka Węgrzyn
  • Alicja Rafalska-Łasocha
  • Dorota Majda
  • Roman Dziembaj
  • Helmut Papp


A series of Mg/Al hydrotalcites with tailored content of carbonate and nitrate anions was prepared using precipitation method. A part of the obtained materials was additionally crystallized in hydrothermal conditions. Different hydrotalcite phases or domains may co-exist within one sample obtained at controlled conditions. Decomposition mechanism studied in situ (DRIFT, XRD) was different for the samples with high concentration of interlayer nitrate anions than for carbonate-containing sample. TG-QMS study of hydrothermally treated samples provided more precise data for quantitative description of decomposition steps of Mg/Al hydrotalcites containing different mixtures of nitrate and carbonate anions.


Decomposition mechanism Nitrate-containing hydrotalcite In situ XRD In situ DRIFT TG-QMS 


  1. 1.
    Allmann R. The crystal structure of pyroaurite. Acta Cryst. 1968;B24:972–7.Google Scholar
  2. 2.
    Miyata S. US Patent 3 796 792 (1974).Google Scholar
  3. 3.
    Cavani F, Trifiro F, Vaccari A. Hydrotalcite-type anionic clays: preparation, properties and applications. Catal Today. 1991;11:173–301.CrossRefGoogle Scholar
  4. 4.
    Choy JH, Choi SJ, Oh JM, Park T. Clay minerals and layered double hydroxides for novel biological applications. Appl Clay Sci. 2007;36:122–32.CrossRefGoogle Scholar
  5. 5.
    Evans DG, Duan X. Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine. Chem. Commun. 2006; 485–96.Google Scholar
  6. 6.
    Vial S, Prevot V, Forano C. Novel route for layered double hydroxides preparation by enzymatic decomposition of urea. J Phys Chem Solids. 2006;67:1048–53.CrossRefGoogle Scholar
  7. 7.
    Jobbágy M, Regazzoni AE. Delamination and restacking of hybrid layered double hydroxides assessed by in situ XRD. J Coll Interf Sci. 2004;275:345–8.CrossRefGoogle Scholar
  8. 8.
    Hu G, O’Hare D. Unique layered double hydroxide morphologies using reverse microemulsion synthesis. J Am Chem Soc. 2005;127:17808–13.CrossRefGoogle Scholar
  9. 9.
    Benito P, Labajos FM, Rocha J, Rives V. Influence of microwave radiation on the textural properties of layered double hydroxides. Microporous Mesoporous Mater. 2006;94:148–58.CrossRefGoogle Scholar
  10. 10.
    Benito P, Guinea I, Labajos FM, Rocha J, Rives V. Microwave-hydrothermally aged Zn,Al hydrotalcite-like compounds: influence of the composition and the irradiation conditions. Microporous Mesoporous Mater. 2008;110:292–302.CrossRefGoogle Scholar
  11. 11.
    Abelló S, Pérez-Ramírez J. Tuning nanomaterials’ characteristics by a miniaturized in-line dispersion-precipitation method: application to hydrotalcite synthesis. Adv Mater. 2006;18:2436–9.CrossRefGoogle Scholar
  12. 12.
    Xu ZP, Zeng HC. Abrupt structural transformation in hydrotalcite-like compounds Mg1-xAlx(OH)2(NO3)x·nH2O as a continuous function of nitrate anions. J Phys Chem B. 2001;105:1743–9.CrossRefGoogle Scholar
  13. 13.
    Pérez-Ramírez J, Abelló S. Thermal decomposition of hydrotalcite-like compounds studied by a novel tapered element oscillating microbalance (TEOM). Comparison with TGA and DTA. Thermochim Acta. 2006;444:75–82.CrossRefGoogle Scholar
  14. 14.
    Chmielarz L, Kuśtrowski P, Rafalska-Łasocha A, Dziembaj R. Influence of Cu, Co and Ni cations incorporated in brucite-type layers on thermal behaviour of hydrotalcites and reducibility of the derived mixed oxide systems. Thermochim Acta. 2003;395:225–36.CrossRefGoogle Scholar
  15. 15.
    Yun SK, Pinnavaia TJ. Water content and particle texture of synthetic hydrotalcite-like layered double hydroxides. Chem Mater. 1995;7:348–54.CrossRefGoogle Scholar
  16. 16.
    Rey F, Fornes V, Rojo JM. Thermal decomposition of hydrotalcites. An infrared and nuclear magnetic resonance spectroscopic study. J Chem Soc Faraday Trans. 1992;88:2233–8.CrossRefGoogle Scholar
  17. 17.
    Palmer SJ, Spratt HJ, Frost RL. Thermal decomposition of hydrotalcites with variable cationic ratios. J Therm Anal Calorim. 2009;95:123–9.CrossRefGoogle Scholar
  18. 18.
    Hibino T, Yamashita Y, Kosuge K, Tsunashima A. Decarbonation behaviour of Mg-Al-CO3 hydrotalcite-like compounds during heat treatment. Clays Clay Miner. 1995;43:427–32.CrossRefGoogle Scholar
  19. 19.
    Frost RL, Martens W, Ding Z, Kloprogge JT. DSC and high-resolution TG of synthesized hydrotalcites of Mg and Zn. J Therm Anal Calorim. 2003;71:429–38.CrossRefGoogle Scholar
  20. 20.
    Vagvölgyi V, Palmer SJ, Kristof J, Frost RL, Horvath E. Mechanism for hydrotalcite decomposition: a controlled rate thermal analysis study. J Coll Interf Sci. 2008;318:302–8.CrossRefGoogle Scholar
  21. 21.
    van Bokhoven JA, Roelofs JCAA, de Jong KP, Koningsberger DC. Unique structural properties of the Mg-Al hydrotalcite solid base catalyst: an in situ study using Mg and Al K-edge XAFS during calcination and rehydration. Chem Eur J. 2001;7:1258–65.CrossRefGoogle Scholar
  22. 22.
    Kanezaki E. Thermal behavior of the hydrotalcite-like layered structure of Mg and Al-layered double hydroxides with interlayer carbonate by means of in situ powder HTXRD and DTA/TG. Solid State Ionics. 1998;106:279–84.CrossRefGoogle Scholar
  23. 23.
    Kanezaki E. Direct observation of a metastable solid phase of Mg/Al/CO3-layered double hydroxide by means of high temperature in situ powder XRD and DTA/TG. Inorg Chem. 1998;37:2588–90.CrossRefGoogle Scholar
  24. 24.
    Millange F, Walton RI, O’Hare D. Time-resolved in situ X-ray diffraction study of the liquid-phase reconstructitm of Mg-Al-carboaate hydrotalcite-like compounds. J Mater Chem. 2000;10:1713–20.CrossRefGoogle Scholar
  25. 25.
    Yang W, Kim Y, Liu PKT, Sahimi M, Tsotsis TT. A study by in situ techniques of the thermal evolution of the structure of a Mg-Al-CO3 layered double hydroxide. Chem Eng Sci. 2002;57:2945–53.CrossRefGoogle Scholar
  26. 26.
    Kim Y, Yang W, Liu PKT, Sahimi M, Tsotsis TT. Thermal evolution of the structure of a Mg-Al-CO3 layered double hydroxide: sorption reversibility aspects. Ind Eng Chem Res. 2004;43:4559–70.CrossRefGoogle Scholar
  27. 27.
    Pérez-Ramírez J, Abelló S, van der Pers NM. Memory effect of activated Mg-Al hydrotalcite: in situ XRD studies during decomposition and gas-phase reconstruction. Chem Eur J. 2007;13:870–8.CrossRefGoogle Scholar
  28. 28.
    Pérez-Ramírez J, Mul G, Kapteijn F, Moulijn JA. In situ investigation of the thermal decomposition of Co-Al hydrotalcite in different atmospheres. J Mater Chem. 2001;11:821–30.CrossRefGoogle Scholar
  29. 29.
    Abelló S, Medina F, Tichit D, Pérez-Ramírez J, Groen JC, Sueiras JE, et al. Aldol condensations over reconstructed Mg-Al hydrotalcites: structure-activity relationships related to the rehydration method. Chem Eur J. 2005;11:728–39.CrossRefGoogle Scholar
  30. 30.
    Xu ZP, Zeng HC. Decomposition pathways of hydrotalcite-like compounds Mg1-xAlx(OH)2(NO3)x·nH2O as a continuous function of nitrate anions. Chem Mater. 2001;13:4564–72.CrossRefGoogle Scholar
  31. 31.
    Węgrzyn A, Rafalska-Łasocha A, Dudek B, Dziembaj R. Nanostructured V-containing hydrotalcite-like materials obtained by non-stoichiometric anion exchange as precursors of catalysts for oxidative dehydrogenation of n-butane. Catal Today. 2006;116:74–81.CrossRefGoogle Scholar
  32. 32.
    Allada RK, Pless JD, Nenoff TM, Navrotsky A. Thermochemistry of hydrotalcite-like phases intercalated with CO3 2-, NO3 -, Cl-, I-, and ReO4 -. Chem Mater. 2005;17:2455–9.CrossRefGoogle Scholar
  33. 33.
    Kloprogge JT, Wharton D, Hickey L, Frost RL. Infrared and Raman study of interlayer anions CO3 2-, NO3 -, SO4 2- and ClO4 - in Mg/Al-hydrotalcite. Am Mineral. 2002;87:623–9.Google Scholar
  34. 34.
    Kloprogge JT, Ruan H, Frost RL. Near-infrared spectroscopic study of basic aluminum sulfate and nitrate. J Mater Sci. 2001;36:603–7.CrossRefGoogle Scholar
  35. 35.
    Hutson ND, Speakman SA, Payzant EA. Structural effects on the high temperature adsorption of CO2 on a synthetic hydrotalcite. Chem Mater. 2006;16:4135–43.CrossRefGoogle Scholar
  36. 36.
    Di Cosimo JI, Diez VK, Xu M, Iglesia E, Apesteguia CR. Structure and surface and catalytic properties of Mg-Al basic oxides. J Catal. 1998;178:499–510.CrossRefGoogle Scholar
  37. 37.
    Miyata S. The syntheses of hydrotalcite-like compounds and their structures and physicochemical properties I: the systems Mg2+-Al3+-NO3 , Mg2+-Al3+-Cl, Mg2+-Al3+-ClO4 , Ni2+-Al3+-Cl and Zn2+-Al3+-Cl. Clays Clay Miner. 1975;23:369–75.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • Agnieszka Węgrzyn
    • 1
  • Alicja Rafalska-Łasocha
    • 1
  • Dorota Majda
    • 2
  • Roman Dziembaj
    • 1
    • 2
  • Helmut Papp
    • 3
  1. 1.Faculty of ChemistryJagiellonian UniversityKrakowPoland
  2. 2.Regional Laboratory for Physicochemical Analyses and Structural ResearchJagiellonian UniversityKrakowPoland
  3. 3.Institute of Technical ChemistryUniversity of LeipzigLeipzigGermany

Personalised recommendations